875 research outputs found
Diabatic and adiabatic transitions between Floquet states imprinted in coherent exciton emission in monolayer WSe₂
光を着た電子状態の飛び移りを世界で初めて観測に成功 --赤外光パルスによる電子状態制御へ--. 京都大学プレスリリース. 2022-12-28.Floquet engineering is a promising way of controlling quantum system with photon-dressed states on an ultrafast time scale. So far, the energy structure of Floquet states in solids has been intensively investigated. However, the dynamical aspects of the photon-dressed states under ultrashort pulse have not been explored yet. Their dynamics become highly sensitive to the driving field transients, and thus, understanding them is crucial for ultrafast manipulation of a quantum state. Here, we observed the coherent exciton emission in monolayer WSe₂ at room temperature at the appropriate photon energy and the field strength of the driving light pulse using high-harmonic spectroscopy. Together with numerical calculations, our measurements revealed that the coherent exciton emission spectrum reflects the diabatic and adiabatic dynamics of Floquet states of excitons. Our results provide a previosuly unexplored approach to Floquet engineering and lead to control of quantum materials through pulse shaping of the driving field
Bell's inequality violation with spins in silicon
Bell's theorem sets a boundary between the classical and quantum realms, by
providing a strict proof of the existence of entangled quantum states with no
classical counterpart. An experimental violation of Bell's inequality demands
simultaneously high fidelities in the preparation, manipulation and measurement
of multipartite quantum entangled states. For this reason the Bell signal has
been tagged as a single-number benchmark for the performance of quantum
computing devices. Here we demonstrate deterministic, on-demand generation of
two-qubit entangled states of the electron and the nuclear spin of a single
phosphorus atom embedded in a silicon nanoelectronic device. By sequentially
reading the electron and the nucleus, we show that these entangled states
violate the Bell/CHSH inequality with a Bell signal of 2.50(10). An even higher
value of 2.70(9) is obtained by mapping the parity of the two-qubit state onto
the nuclear spin, which allows for high-fidelity quantum non-demolition
measurement (QND) of the parity. Furthermore, we complement the Bell inequality
entanglement witness with full two-qubit state tomography exploiting QND
measurement, which reveals that our prepared states match the target maximally
entangled Bell states with 96\% fidelity. These experiments demonstrate
complete control of the two-qubit Hilbert space of a phosphorus atom, and show
that this system is able to maintain its simultaneously high initialization,
manipulation and measurement fidelities past the single-qubit regime.Comment: 10 pages, 3 figures, 1 table, 4 extended data figure
Searches for New Milky Way Satellites from the First Two Years of Data of the Subaru/Hyper Suprime-Cam Survey: Discovery of Cetus~III
We present the results from a search for new Milky Way (MW) satellites from
the first two years of data from the Hyper Suprime-Cam (HSC) Subaru Strategic
Program (SSP) ~deg and report the discovery of a highly
compelling ultra-faint dwarf galaxy candidate in Cetus. This is the second
ultra-faint dwarf we have discovered after Virgo~I reported in our previous
paper. This satellite, Cetus~III, has been identified as a statistically
significant (10.7) spatial overdensity of star-like objects, which are
selected from a relevant isochrone filter designed for a metal-poor and old
stellar population. This stellar system is located at a heliocentric distance
of 251~kpc with a most likely absolute magnitude of ~mag estimated from a Monte Carlo analysis. Cetus~III is extended with
a half-light radius of ~pc, suggesting that this is a
faint dwarf satellite in the MW located beyond the detection limit of the Sloan
Digital Sky Survey. Further spectroscopic studies are needed to assess the
nature of this stellar system. We also revisit and update the parameters for
Virgo~I finding ~mag and ~pc. Using simulations of -dominated cold dark matter
models, we predict that we should find one or two new MW satellites from ~deg HSC-SSP data, in rough agreement with the discovery rate so far.
The further survey and completion of HSC-SSP over ~deg will
provide robust insights into the missing satellites problem.Comment: 12 pages, 12 figures, accepted for publication in PASJ special issu
Sparse Exploratory Factor Analysis
Sparse principal component analysis is a very active research area in the last decade. It produces component loadings with many zero entries which facilitates their interpretation and helps avoid redundant variables. The classic factor analysis is another popular dimension reduction technique which shares similar interpretation problems and could greatly benefit from sparse solutions. Unfortunately, there are very few works considering sparse versions of the classic factor analysis. Our goal is to contribute further in this direction. We revisit the most popular procedures for exploratory factor analysis, maximum likelihood and least squares. Sparse factor loadings are obtained for them by, first, adopting a special reparameterization and, second, by introducing additional [Formula: see text]-norm penalties into the standard factor analysis problems. As a result, we propose sparse versions of the major factor analysis procedures. We illustrate the developed algorithms on well-known psychometric problems. Our sparse solutions are critically compared to ones obtained by other existing methods
Electrically controlling single spin qubits in a continuous microwave field
Large-scale quantum computers must be built upon quantum bits that are both
highly coherent and locally controllable. We demonstrate the quantum control of
the electron and the nuclear spin of a single 31P atom in silicon, using a
continuous microwave magnetic field together with nanoscale electrostatic
gates. The qubits are tuned into resonance with the microwave field by a local
change in electric field, which induces a Stark shift of the qubit energies.
This method, known as A-gate control, preserves the excellent coherence times
and gate fidelities of isolated spins, and can be extended to arbitrarily many
qubits without requiring multiple microwave sources.Comment: Main paper: 13 pages, 4 figures. Supplementary information: 25 pages,
13 figure
Hybrid Session Verification through Endpoint API Generation
© Springer-Verlag Berlin Heidelberg 2016.This paper proposes a new hybrid session verification methodology for applying session types directly to mainstream languages, based on generating protocol-specific endpoint APIs from multiparty session types. The API generation promotes static type checking of the behavioural aspect of the source protocol by mapping the state space of an endpoint in the protocol to a family of channel types in the target language. This is supplemented by very light run-time checks in the generated API that enforce a linear usage discipline on instances of the channel types. The resulting hybrid verification guarantees the absence of protocol violation errors during the execution of the session. We implement our methodology for Java as an extension to the Scribble framework, and use it to specify and implement compliant clients and servers for real-world protocols such as HTTP and SMTP
- …