140 research outputs found
Experimental Study of Low-Speed Cavity Flow Using Steady Jets
Open cavity ሺܮ/ܦ = 4ሻ was examined at low speed
ሺܷஶ = 26 ݉/ݏሻ. The baseline flow showed a typical open cavity
flow. It was also found that a region of relatively high velocity
fluctuations (indicated by RMS values) extends along the cavity
separated shear layer from the mid of the cavity to the cavity’s
trailing edge. Steady jets at an outlet velocity of 1.8 m/s was
forced through a narrow slot at the leading edge. The jets
modified the profile shape of the averaged ܷ velocity for the
shear layer at the close proximity of the leading edge. However,
the jet increased the fluctuation in the separated shear layer
Compressible vortex loops: effect of nozzle geometry
Vortex loops are fundamental building blocks of supersonic free jets. Isolating them allows for an easier study and better understanding of such flows. The present study looks at the behaviour of compressible vortex loops of different shapes, generated due to the diffraction of a shock wave from a shock tube with different exit nozzle geometries. These include a 15 mm diameter circular nozzle, two elliptical nozzles with minor to major axis ratios of 0.4 and 0.6, a 30 × 30 mm square nozzle, and finally two exotic nozzles resembling a pair of lips with minor to major axis ratios of 0.2 and 0.5. The experiments were performed for diaphragm pressure ratios of P4/P1=4, 8, and 12, with P4 and P1 being the pressures within the high pressure and low pressure compartments of the shock tube, respectively. High-speed schlieren photography as well as PIV measurements of both stream-wise and head-on flows have been conducted
Application of pressure-sensitive paints to unsteady and high-speed flows
The Pressure-Sensitive Paint (PSP) technique allows the global pressure mapping of surfaces under aerodynamic conditions. The present study involves the application of Tris- Bathophenanthroline Ruthenium Perchlorate based PSP, developed in-house, to two different cases; a) the flow through a sonic nozzle, and b) the examination of the effect of dimples on glancing shock wave turbulent boundary layer interactions at transonic speeds
Detonation driven shock wave interactions with perforated plates
The study of detonations and their interactions is vital for the understanding of the high-speed flow physics involved and the ultimate goal of controlling their detrimental effects. However, producing safe and repeatable detonations within the laboratory can be quite challenging, leading to the use of computational studies which ultimately require experimental data for their validation. The objective of this study is to examine the induced flow field from the interaction of a shock front and accompanying products of combustion, produced from the detonation taking place within a non-electrical tube lined with explosive material, with porous plates with varying porosities, 0.7–9.7%. State of the art high-speed schlieren photography alongside high-resolution pressure measurements is used to visualise the induced flow field and examine the attenuation effects which occur at different porosities. The detonation tube is placed at different distances from the plates' surface, 0–30 mm, and the pressure at the rear of the plate is recorded and compared. The results indicate that depending on the level of porosity and the Mach number of the precursor shock front secondary reflected and transmitted shock waves are formed through the coalescence of compression waves. With reduced porosity, the plates act almost as a solid surface, therefore the shock propagates faster along its surface
Control of Cavity-Induced Drag Using Steady Jets
Separated shear layer oscillations in open cavities can
induce drag, noise and vibration. This issue has many
aerospace applications such as Landing gears and control
surfaces [1]. Recently, phase-cancellation [1] and offinstability
frequency excitation [2] & [3] approaches have
been incorporated in different open-loop and feedback control
systems. Despite the high control performance of these
systems, further enhancement is still possible.
In this study, steady jets, as shown in fig. 1, are forced
through 2mm, two-dimensional slots at the leading and trailing
edges of the cavity. In order to study the performance of this
novel approach, different cases will be examined, including:
jet combination (blowing from cavity leading edge, suction
from cavity leading edge and blowing-suction), jet angle
(parallel or deflected jet) and jet-to-free stream velocity
factor /.
Anodized aluminium pressure sensitive paint: effect of paint application technique
The porous surface of the Anodized Aluminium Pressure Sensitive Paint (AA-PSP) is what differentiates it from conventional sol–gel based PSPs, leading to a faster response time of the paint. The objective of the current study is to examine the effect of the paint application technique, i.e., whether the AA substrate is dipped or sprayed, on the pressure and temperature sensitivity. A more practical procedure for preparing the AA samples is also presented. Scanning Electron Microscope (SEM) images are acquired together with the calibration of the AA-PSP at various temperatures and pressures to determine the effectiveness of each application technique. The results revealed that the AA sample which was dipped in the PSP solution shows a higher pressure sensitivity than the sprayed one. The SEMs show that spraying leads to the covering up of the micropores created on the surface and undermining the benefit of anodization
Study of detonation interactions inside a 2-D ejector using detonation transmission tubing
Study of detonation interactions inside a two-dimensional ejector using detonation transmission tubing was reported. The main objective of the ejector assembly in the study is to make the flow-field as close to 2-D as possible. Optical-grade Perspex sheets with a thickness of 10 mm were used on both sides of the nozzle to allow visualization of the flow. Wall pressure measurements were conducted at the locations. The NONEL tube was flush with the entrance of the nozzle. The signal to begin pressure measurements and image acquisition was obtained through a Kulite XT-190 transducer. The detonation was initiate by an electronic blasting machine, DynoStart 2, with a capacitance of 0.2μF and an output voltage of 2500 V. High-speed shadowgraphy was employed to visualize the flow. The results show that the effects of 3-D flow at the initial stage of the detonation affect the incident shock front and the reflected shock wave system at the nozzle entrance
Experimental Study of Low-Speed Cavity Flow Using Steady Jets
Open cavity ሺܮ/ܦ = 4ሻ was examined at low speed
ሺܷஶ = 26 ݉/ݏሻ. The baseline flow showed a typical open cavity
flow. It was also found that a region of relatively high velocity
fluctuations (indicated by RMS values) extends along the cavity
separated shear layer from the mid of the cavity to the cavity’s
trailing edge. Steady jets at an outlet velocity of 1.8 m/s was
forced through a narrow slot at the leading edge. The jets
modified the profile shape of the averaged ܷ velocity for the
shear layer at the close proximity of the leading edge. However,
the jet increased the fluctuation in the separated shear layer
- …