71 research outputs found
Lithostratigraphy of the CretaceousâPaleocene Nuussuaq Group, Nuussuaq Basin, West Greenland
The Nuussuaq Basin is the only exposed CretaceousâPaleocene sedimentary basin in West Greenland and is one of a complex of linked rift basins stretching from the Labrador Sea to northern BafďŹn Bay. These basins developed along West Greenland as a result of the opening of the Labrador Sea in Late Mesozoic to Early Cenozoic times. The Nuussuaq Basin is exposed in West Greenland between 69°N and 72°N on Disko, Nuussuaq, Upernivik Ă, Qeqertarsuaq, Itsaku and Svartenhuk Halvø and has also been recorded in a number of shallow and deep wells in the region. The sediments are assigned to the more than 6 km thick Nuussuaq Group (new) which underlies the Palaeogene plateau basalts of the West Greenland Basalt Group. The sediment thickness is best estimated from seismic data; in the western part of the area, seismic and magnetic data suggest that the succession is at least 6 km and possibly as much as 10 km thick. The exposed AlbianâPaleocene part of the succession testifies to two main episodes of regional rifting and basin development: an Early Cretaceous and a Late Cretaceous â Early Paleocene episode prior to the start of sea-ďŹoor spreading in mid-Paleocene time. This exposed section includes fan delta, fluviodeltaic, shelfal and deep marine deposits.
The Nuussuaq Group is divided into ten formations, most of which have previously been only briefly described, with the exception of their macrofossil content. In ascending stratigraphic order, the formations are: the Kome Formation, the Slibestensfjeldet Formation (new), the Upernivik NĂŚs Formation, the Atane Formation (including four new members â the Skansen, Ravn Kløft, Kingittoq and Qilakitsoq Members â and one new bed, the Itivnera Bed), the Itilli Formation (new, including four new members, the Anariartorfik, Umiivik, Kussinerujuk and Aaffarsuaq Members), the Kangilia Formation (including the redefined Annertuneq Conglomerate Member and the new OysterâAmmonite Conglomerate Bed), the Quikavsak Formation (including three new members: the Tupaasat, Nuuk Qiterleq and Paatuutkløften Members), the Agatdal Formation, the Eqalulik Formation (new, including the Abraham Member), and the Atanikerluk Formation (including five members: the Naujât, Akunneq (new), Pingu (new), Umiussat and Assoq (new) Members)
Using Polarized Spectroscopy to Investigate Order in Thin-Films of Ionic Self-Assembled Materials Based on Azo-Dyes
Three series of ionic self-assembled materials based on anionic azo-dyes and cationic benzalkonium surfactants were synthesized and thin films were prepared by spin-casting. These thin films appear isotropic when investigated with polarized optical microscopy, although they are highly anisotropic. Here, three series of homologous materials were studied to rationalize this observation. Investigating thin films of ordered molecular materials relies to a large extent on advanced experimental methods and large research infrastructure. A statement that in particular is true for thin films with nanoscopic order, where X-ray reflectometry, X-ray and neutron scattering, electron microscopy and atom force microscopy (AFM) has to be used to elucidate film morphology and the underlying molecular structure. Here, the thin films were investigated using AFM, optical microscopy and polarized absorption spectroscopy. It was shown that by using numerical method for treating the polarized absorption spectroscopy data, the molecular structure can be elucidated. Further, it was shown that polarized optical spectroscopy is a general tool that allows determination of the molecular order in thin films. Finally, it was found that full control of thermal history and rigorous control of the ionic self-assembly conditions are required to reproducibly make these materials of high nanoscopic order. Similarly, the conditions for spin-casting are shown to be determining for the overall thin film morphology, while molecular order is maintained
The life and scientific work of William R. Evitt (1923-2009)
Occasionally (and fortunately), circumstances and timing combine to allow an individual, almost singlehandedly, to generate a paradigm shift in his or her chosen field of inquiry. William R. (âBillâ) Evitt (1923-2009) was such a person. During his career as a palaeontologist, Bill Evitt made lasting and profound contributions to the study of both dinoflagellates and trilobites. He had a distinguished, long and varied career, researching first trilobites and techniques in palaeontology before moving on to marine palynomorphs. Bill is undoubtedly best known for his work on dinoflagellates, especially their resting cysts. He worked at three major US universities and spent a highly significant period in the oil industry. Bill's early profound interest in the natural sciences was actively encouraged both by his parents and at school. His alma mater was Johns Hopkins University where, commencing in 1940, he studied chemistry and geology as an undergraduate. He quickly developed a strong vocation in the earth sciences, and became fascinated by the fossiliferous Lower Palaeozoic strata of the northwestern United States. Bill commenced a PhD project on silicified Middle Ordovician trilobites from Virginia in 1943. His doctoral research was interrupted by military service during World War II; Bill served as an aerial photograph interpreter in China in 1944 and 1945, and received the Bronze Star for his excellent work. Upon demobilisation from the US Army Air Force, he resumed work on his PhD and was given significant teaching duties at Johns Hopkins, which he thoroughly enjoyed. He accepted his first professional position, as an instructor in sedimentary geology, at the University of Rochester in late 1948. Here Bill supervised his first two graduate students, and shared a great cameraderie with a highly motivated student body which largely comprised World War II veterans. At Rochester, Bill continued his trilobite research, and was the editor of the Journal of Paleontology between 1953 and 1956. Seeking a new challenge, he joined the Carter Oil Company in Tulsa, Oklahoma, during 1956. This brought about an irrevocable realignment of his research interests from trilobites to marine palynology. He undertook basic research on aquatic palynomorphs in a very well-resourced laboratory under the direction of one of his most influential mentors, William S. âBillâ Hoffmeister. Bill Evitt visited the influential European palynologists Georges Deflandre and Alfred Eisenack during late 1959 and, while in Tulsa, first developed several groundbreaking hypotheses. He soon realised that the distinctive morphology of certain fossil dinoflagellates, notably the archaeopyle, meant that they represent the resting cyst stage of the life cycle. The archaeopyle clearly allows the excystment of the cell contents, and comprises one or more plate areas. Bill also concluded that spine-bearing palynomorphs, then called hystrichospheres, could be divided into two groups. The largely Palaeozoic spine-bearing palynomorphs are of uncertain biological affinity, and these were termed acritarchs. Moreover, he determined that unequivocal dinoflagellate cysts are all Mesozoic or younger, and that the fossil record of dinoflagellates is highly selective. Bill was always an academic at heart and he joined Stanford University in 1962, where he remained until retiring in 1988. Bill enjoyed getting back into teaching after his six years in industry. During his 26-year tenure at Stanford, Bill continued to revolutionise our understanding of dinoflagellate cysts. He produced many highly influential papers and two major textbooks. The highlights include defining the acritarchs and comprehensively documenting the archaeopyle, together with highly detailed work on the morphology of Nannoceratopsis and Palaeoperidinium pyrophorum using the scanning electron microscope. Bill supervised 11 graduate students while at Stanford University. He organised the Penrose Conference on Modern and Fossil Dinoflagellates in 1978, which was so successful that similar meetings have been held about every four years since that inaugural symposium. Bill also taught many short courses on dinoflagellate cysts aimed at the professional community. Unlike many eminent geologists, Bill actually retired from actively working in the earth sciences. His full retirement was in 1988; after this he worked on only a small number of dinoflagellate cyst projects, including an extensive paper on the genus Palaeoperidinium
- âŚ