224 research outputs found
Effect of angular-momentum dissipation and fluctuation on energy coherence lengths and time evolution in the dissipative collision 28Si + 48Ti
Abstract We analyze the energy autocorrelation functions and the energy coherence lengths in the strongly dissipative collision 28 Si (E lab = 130 MeV ) + 48 Ti for Z = 11 and 12 reaction fragments. It is found that in order to obtain a good fit of both the energy-averaged angular distributions and the angular dependence of the energy coherence lengths one has to take into account (i) the dissipation and fluctuation of the relative angular momentum of the dinucleus and (ii) the contribution from direct (fast) reactions in addition to the statistical (relative slow) interaction processes. The established angular dependence is a direct consequence of the angular-momentum dissipation-fluctuation effects on the time-space evolution of the intermediate dinucleus
Recommended from our members
Non-stoichiometric oxide and metal interfaces and reactions
We have employed a combination of experimental surface science techniques and density functional calculations to study the reduction of TiO2(110) surfaces through the doping with submonolayer transition metals. We concentrate on the role of Ti adatoms in self doping of rutile and contrast the behaviour to that of Cr. DFT+U calculations enable identification of probable adsorption structures and their spectroscopic characteristics. Adsorption of both metals leads to a broken symmetry and an asymmetric charge transfer localised around the defect site of a mixed localised/delocalised character. Charge transfer creates defect states with Ti 3d character in the band gap at similar to 1-eV binding energy. Cr adsorption, however, leads to a very large shift in the valence-band edge to higher binding energy and the creation of Cr 3d states at 2.8-eV binding energy. Low-temperature oxidation lifts the Ti-derived band-gap states and modifies the intensity of the Cr features, indicative of a change of oxidation state from Cr3+ to Cr4+. Higher temperature processing leads to a loss of Cr from the surface region, indicative of its substitution into the bulk
Mechanical and chemical spinodal instabilities in finite quantum systems
Self consistent quantum approaches are used to study the instabilities of
finite nuclear systems. The frequencies of multipole density fluctuations are
determined as a function of dilution and temperature, for several isotopes. The
spinodal region of the phase diagrams is determined and it appears that
instabilities are reduced by finite size effects. The role of surface and
volume instabilities is discussed. It is indicated that the important chemical
effects associated with mechanical disruption may lead to isospin
fractionation.Comment: 4 pages, 4 figure
Random Matrices and Chaos in Nuclear Physics
The authors review the evidence for the applicability of random--matrix
theory to nuclear spectra. In analogy to systems with few degrees of freedom,
one speaks of chaos (more accurately: quantum chaos) in nuclei whenever
random--matrix predictions are fulfilled. An introduction into the basic
concepts of random--matrix theory is followed by a survey over the extant
experimental information on spectral fluctuations, including a discussion of
the violation of a symmetry or invariance property. Chaos in nuclear models is
discussed for the spherical shell model, for the deformed shell model, and for
the interacting boson model. Evidence for chaos also comes from random--matrix
ensembles patterned after the shell model such as the embedded two--body
ensemble, the two--body random ensemble, and the constrained ensembles. All
this evidence points to the fact that chaos is a generic property of nuclear
spectra, except for the ground--state regions of strongly deformed nuclei.Comment: 54 pages, 28 figure
Characterization of Landau-Zener Transitions in Systems with Complex Spectra
This paper is concerned with the study of one-body dissipation effects in
idealized models resembling a nucleus. In particular, we study the quantum
mechanics of a free particle that collides elastically with the slowly moving
walls of a Bunimovich stadium billiard. Our results are twofold. First, we
develop a method to solve in a simple way the quantum mechanical evolution of
planar billiards with moving walls. The formalism is based on the {\it scaling
method} \cite{ver} which enables the resolution of the problem in terms of
quantities defined over the boundary of the billiard. The second result is
related to the quantum aspects of dissipation in systems with complex spectra.
We conclude that in a slowly varying evolution the energy is transferred from
the boundary to the particle through LandauZener transitions.Comment: 24 pages (including 7 postcript figures), Revtex. Submitted to PR
Evolution of Baryon-Free Matter Produced in Relativistic Heavy-Ion Collisions
A 3-fluid hydrodynamic model is introduced for simulating heavy-ion
collisions at incident energies between few and about 200 AGeV. In addition to
the two baryon-rich fluids of 2-fluid models, the new model incorporates a
third, baryon-free (i.e. with zero net baryonic charge) fluid which is created
in the mid-rapidity region. Its evolution is delayed due to a formation time
, during which the baryon-free fluid neither thermalizes nor interacts
with the baryon-rich fluids. After formation it thermalizes and starts to
interact with the baryon-rich fluids. It is found that for =0 the
interaction strongly affects the baryon-free fluid. However, at reasonable
finite formation time, =1 fm/c, the effect of this interaction turns out
to be substantially reduced although still noticeable. Baryonic observables are
only slightly affected by the interaction with the baryon-free fluid.Comment: 17 pages, 3 figures, submitted to the issue of Phys. of Atomic Nuclei
dedicated to S.T. Belyaev on the occasion of his 80th birthday, typos
correcte
Sound modes in hot nuclear matter
The propagation of the isoscalar and isovector sound modes in a hot nuclear
matter is considered. The approach is based on the collisional kinetic theory
and takes into account the temperature and memory effects. It is shown that the
sound velocity and the attenuation coefficient are significantly influenced by
the Fermi surface distortion (FSD). The corresponding influence is much
stronger for the isoscalar mode than for the isovector one. The memory effects
cause a non-monotonous behavior of the attenuation coefficient as a function of
the relaxation time leading to a zero-to-first sound transition with increasing
temperature. The mixing of both the isoscalar and the isovector sound modes in
an asymmetric nuclear matter is evaluated. The condition for the bulk
instability and the instability growth rate in the presence of the memory
effects is studied. It is shown that both the FSD and the relaxation processes
lead to a shift of the maximum of the instability growth rate to the longer
wave length region.Comment: 15 pages, 4 figures, submitted to Phys. Rev.
GaN and InN nanowires grown by MBE: a comparison
Morphological, optical and transport properties of GaN and InN nanowires
grown by molecular beam epitaxy (MBE) have been studied. The differences
between the two materials in respect to growth parameters and optimization
procedure was stressed. The nanowires crystalline quality has been investigated
by means of their optical properties. A comparison of the transport
characteristics was given. For each material a band schema was shown, which
takes into account transport and optical features and is based on Fermi level
pinning at the surface.Comment: 5 pages, 5 figure
- …