42 research outputs found
Advancing Our Understanding of Corneal Herpes Simplex Virus-1 Immune Evasion Mechanisms and Future Therapeutics
Herpes stromal keratitis (HSK) is a disease that commonly affects the cornea and external eye and is caused by Herpes Simplex Virus type 1 (HSV-1). This virus infects approximately 66% of people worldwide; however, only a small portion of these people will develop symptoms in their lifetime. There is no cure or vaccine available for HSV-1; however, there are treatments available that aim to control the inflammation caused by the virus and prevent its recurrence. While these treatments are beneficial to those suffering with HSK, there is a need for more effective treatments to minimise the need for topical steroids, which can have harmful effects, and to prevent bouts of disease reactivation, which can lead to progressive corneal scarring and visual impairment. This review details the current understanding of HSV-1 infection and discusses potential novel treatment options including microRNAs, TLRs, mAbs, and aptamers
Herpes Simplex Virus 1 Targets IRF7 via ICP0 to Limit Type I IFN Induction
Herpes simplex keratitis (HSK), caused by herpes simplex virus type 1 (HSV‑1) infection, is the commonest cause of infectious blindness in the developed world. Following infection the virus is initially suspended in the tear film, where it encounters a multi‑pronged immune response comprising enzymes, complement, immunoglobulins and crucially, a range of anti‑viral and pro‑inflammatory cytokines. However, given that HSV‑1 can overcome innate immune responses to establish lifelong latency throughout a susceptible individual’s lifetime, there is significant interest in understanding the mechanisms employed by HSV‑1 to downregulate the anti‑viral type I interferon (IFN) mediated immune responses. This study aimed to investigate the interactions between infected cell protein (ICP)0 and key elements of the IFN pathway to identify possible novel targets that contribute to viral immune evasion. Reporter gene assays demonstrated the ability of ICP0 to inhibit type I IFN activity downstream of pathogen recognition receptors (PRRs) which are known to be involved in host antiviral defences. Further experiments identified interferon regulatory factor (IRF)7, a driver of type I IFN, as a potential target for ICP0. These findings increase our understanding of the pathogenesis of HSK and suggest IRF7 as a potential therapeutic target
Btk Regulated Macrophage Polarization in Response to Lipopolysaccharide
Bacterial Lipopolysaccharide (LPS) is a strong inducer of inflammation and does so by inducing polarization of macrophages to the classic inflammatory M1 population. Given the role of Btk as a critical signal transducer downstream of TLR4, we investigated its role in M1/M2 induction. In Btk deficient (Btk−\−) mice we observed markedly reduced recruitment of M1 macrophages following intraperitoneal administration of LPS. Ex vivo analysis demonstrated an impaired ability of Btk−/− macrophages to polarize into M1 macrophages, instead showing enhanced induction of immunosuppressive M2-associated markers in response to M1 polarizing stimuli, a finding accompanied by reduced phosphorylation of STAT1 and enhanced STAT6 phosphorylation. In addition to STAT activation, M1 and M2 polarizing signals modulate the expression of inflammatory genes via differential activation of transcription factors and regulatory proteins, including NF-κB and SHIP1. In keeping with a critical role for Btk in macrophage polarization, we observed reduced levels of NF-κB p65 and Akt phosphorylation, as well as reduced induction of the M1 associated marker iNOS in Btk−/− macrophages in response to M1 polarizing stimuli. Additionally enhanced expression of SHIP1, a key negative regulator of macrophage polarisation, was observed in Btk−/− macrophages in response to M2 polarizing stimuli. Employing classic models of allergic M2 inflammation, treatment of Btk−/− mice with either Schistosoma mansoni eggs or chitin resulted in increased recruitment of M2 macrophages and induction of M2-associated genes. This demonstrates an enhanced M2 skew in the absence of Btk, thus promoting the development of allergic inflammation
Genetics of SLE: Functional Relevance for Monocytes/Macrophages in Disease
Genetic studies in the last 5 years have greatly facilitated our understanding of how the dysregulation of diverse components of the innate immune system contributes to pathophysiology of SLE. A role for macrophages in the pathogenesis of SLE was first proposed as early as the 1980s following the discovery that SLE macrophages were defective in their ability to clear apoptotic cell debris, thus prolonging exposure of potential autoantigens to the adaptive immune response. More recently, there is an emerging appreciation of the contribution both monocytes and macrophages play in orchestrating immune responses with perturbations in their activation or regulation leading to immune dysregulation. This paper will focus on understanding the relevance of genes identified as being associated with innate immune function of monocytes and macrophages and development of SLE, particularly with respect to their role in (1) immune complex (IC) recognition and clearance, (2) nucleic acid recognition via toll-like receptors (TLRs) and downstream signalling, and (3) interferon signalling. Particular attention will be paid to the functional consequences these genetic associations have for disease susceptibility or pathogenesis
Recommended from our members
Loss of the Lupus Autoantigen Ro52/Trim21 Induces Tissue Inflammation and Systemic Autoimmunity by Disregulating the IL-23–Th17 Pathway
Ro52/Trim21 is targeted as an autoantigen in systemic lupus erythematosus and Sjögren's syndrome. Polymorphisms in the Ro52 gene have been linked to these autoimmune conditions, but the molecular mechanism by which Ro52 may promote development of systemic autoimmune diseases has not been explored. To address this issue, we generated Ro52-null mice (), which appear phenotypically normal if left unmanipulated. However, mice develop severe dermatitis extending from the site of tissue injury induced by ear tags. The affected mice further develop several signs of systemic lupus with hypergammaglobulinemia, autoantibodies to DNA, proteinuria, and kidney pathology. Ro52, which was recently identified as an E3 ligase, mediates ubiquitination of several members of the interferon regulatory factor (IRF) family, and the Ro52-deficient mice have an enhanced production of proinflammatory cytokines that are regulated by the IRF transcription factors, including cytokines involved in the Th17 pathway (interleukin [IL] 6, IL-12/IL-23p40, and IL-17). Loss of IL-23/IL-17 by genetic deletion of IL-23/p19 in the mice conferred protection from skin disease and systemic autoimmunity. These data reveal that the lupus-associated Ro52 protein is an important negative regulator of proinflammatory cytokine production, and they provide a mechanism by which a defective Ro52 function can lead to tissue inflammation and systemic autoimmunity through the IL-23–Th17 pathway
Ursodeoxycholic acid and lithocholic acid exert anti-inflammatory actions in the colon
Inflammatory bowel diseases (IBD) comprise a group of common and debilitating chronic intestinal disorders for which currently available therapies are often unsatisfactory. The naturally occurring secondary bile acid, ursodeoxycholic acid (UDCA), has well-established anti-inflammatory and cytoprotective actions and may therefore be effective in treating IBD. We aimed to investigate regulation of colonic inflammatory responses by UDCA and to determine the potential impact of bacterial metabolism on its therapeutic actions. The anti-inflammatory efficacy of UDCA, a nonmetabolizable analog, 6 alpha-methyl-UDCA (6-MUDCA), and its primary colonic metabolite lithocholic acid (LCA) was assessed in the murine dextran sodium sulfate (DSS) model of mucosal injury. The effects of bile acids on cytokine (TNF-alpha, IL-6, Il-1 beta, and IFN-alpha) release from cultured colonic epithelial cells and mouse colonic tissue in vivo were investigated. Luminal bile acids were measured by gas chromatography-mass spectrometry. UDCA attenuated release of proinflammatory cytokines from colonic epithelial cells in vitro and was protective against the development of colonic inflammation in vivo. In contrast, although 6-MUDCA mimicked the effects of UDCA on epithelial cytokine release in vitro, it was ineffective in preventing inflammation in the DSS model. In UDCA-treated mice, LCA became the most common colonic bile acid. Finally, LCA treatment more potently inhibited epithelial cytokine release and protected against DSS-induced mucosal inflammation than did UDCA. These studies identify a new role for the primary metabolite of UDCA, LCA, in preventing colonic inflammation and suggest that microbial metabolism of UDCA is necessary for the full expression of its protective actions.NEW & NOTEWORTHY On the basis of its cytoprotective and anti-inflammatory actions, the secondary bile acid ursodeoxycholic acid (UDCA) has well-established uses in both traditional and Western medicine. We identify a new role for the primary metabolite of UDCA, lithocholic acid, as a potent inhibitor of intestinal inflammatory responses, and we present data to suggest that microbial metab-olism of UDCA is necessary for the full expression of its protective effects against colonic inflammation
Retraction Notice to: Suppressors of Cytokine Signaling 2 and 3 Diametrically Control Macrophage Polarization
Friday, 8th December 1916
Loss of the lupus autoantigen Ro52/Trim21 induces tissue inflammation and systemic autoimmunity by disregulating the IL-23-Th17 pathway.
Ro52/Trim21 is targeted as an autoantigen in systemic lupus erythematosus and Sjögren\u27s syndrome. Polymorphisms in the Ro52 gene have been linked to these autoimmune conditions, but the molecular mechanism by which Ro52 may promote development of systemic autoimmune diseases has not been explored. To address this issue, we generated Ro52-null mice (Ro52(-/-)), which appear phenotypically normal if left unmanipulated. However, Ro52(-/-) mice develop severe dermatitis extending from the site of tissue injury induced by ear tags. The affected mice further develop several signs of systemic lupus with hypergammaglobulinemia, autoantibodies to DNA, proteinuria, and kidney pathology. Ro52, which was recently identified as an E3 ligase, mediates ubiquitination of several members of the interferon regulatory factor (IRF) family, and the Ro52-deficient mice have an enhanced production of proinflammatory cytokines that are regulated by the IRF transcription factors, including cytokines involved in the Th17 pathway (interleukin [IL] 6, IL-12/IL-23p40, and IL-17). Loss of IL-23/IL-17 by genetic deletion of IL-23/p19 in the Ro52(-/-) mice conferred protection from skin disease and systemic autoimmunity. These data reveal that the lupus-associated Ro52 protein is an important negative regulator of proinflammatory cytokine production, and they provide a mechanism by which a defective Ro52 function can lead to tissue inflammation and systemic autoimmunity through the IL-23-Th17 pathway
Self Protection from Anti-Viral Responses – Ro52 Promotes Degradation of the Transcription Factor IRF7 Downstream of the Viral Toll-Like Receptors
Ro52 is a member of the TRIM family of single-protein E3 ligases and is also a target for autoantibody production in systemic lupus erythematosus and Sjögren's syndrome. We previously demonstrated a novel function of Ro52 in the ubiquitination and proteasomal degradation of IRF3 following TLR3/4 stimulation. We now present evidence that Ro52 has a similar role in regulating the stability and activity of IRF7. Endogenous immunoprecipitation of Ro52-bound proteins revealed that IRF7 associates with Ro52, an effect which increases following TLR7 and TLR9 stimulation, suggesting that Ro52 interacts with IRF7 post-pathogen recognition. Furthermore, we show that Ro52 ubiquitinates IRF7 in a dose-dependent manner, resulting in a decrease in total IRF7 expression and a subsequent decrease in IFN-α production. IRF7 stability was increased in bone marrow-derived macrophages from Ro52-deficient mice stimulated with imiquimod or CpG-B, consistent with a role for Ro52 in the negative regulation of IRF7 signalling. Taken together, these results suggest that Ro52-mediated ubiquitination promotes the degradation of IRF7 following TLR7 and TLR9 stimulation. As Ro52 is known to be IFN-inducible, this system constitutes a negative-feedback loop that acts to protect the host from the prolonged activation of the immune response