192 research outputs found
Quantum Size Effect transition in percolating nanocomposite films
We report on unique electronic properties in Fe-SiO2 nanocomposite thin films
in the vicinity of the percolation threshold. The electronic transport is
dominated by quantum corrections to the metallic conduction of the Infinite
Cluster (IC). At low temperature, mesoscopic effects revealed on the
conductivity, Hall effect experiments and low frequency electrical noise
(random telegraph noise and 1/f noise) strongly support the existence of a
temperature-induced Quantum Size Effect (QSE) transition in the metallic
conduction path. Below a critical temperature related to the geometrical
constriction sizes of the IC, the electronic conductivity is mainly governed by
active tunnel conductance across barriers in the metallic network. The high 1/f
noise level and the random telegraph noise are consistently explained by random
potential modulation of the barriers transmittance due to local Coulomb
charges. Our results provide evidence that a lowering of the temperature is
somehow equivalent to a decrease of the metal fraction in the vicinity of the
percolation limit.Comment: 21 pages, 8 figure
A Cis-Regulatory Map of the Drosophila Genome
Systematic annotation of gene regulatory elements is a major challenge in genome science. Direct mapping of chromatin modification marks and transcriptional factor binding sites genome-wide1, 2 has successfully identified specific subtypes of regulatory elements3. In Drosophila several pioneering studies have provided genome-wide identification of Polycomb response elements4, chromatin states5, transcription factor binding sites6, 7, 8, 9, RNA polymerase II regulation8 and insulator elements10; however, comprehensive annotation of the regulatory genome remains a significant challenge. Here we describe results from the modENCODE cis-regulatory annotation project. We produced a map of the Drosophila melanogaster regulatory genome on the basis of more than 300 chromatin immunoprecipitation data sets for eight chromatin features, five histone deacetylases and thirty-eight site-specific transcription factors at different stages of development. Using these data we inferred more than 20,000 candidate regulatory elements and validated a subset of predictions for promoters, enhancers and insulators in vivo. We identified also nearly 2,000 genomic regions of dense transcription factor binding associated with chromatin activity and accessibility. We discovered hundreds of new transcription factor co-binding relationships and defined a transcription factor network with over 800 potential regulatory relationships
ChIP-chip versus ChIP-seq: Lessons for experimental design and data analysis
<p>Abstract</p> <p>Background</p> <p>Chromatin immunoprecipitation (ChIP) followed by microarray hybridization (ChIP-chip) or high-throughput sequencing (ChIP-seq) allows genome-wide discovery of protein-DNA interactions such as transcription factor bindings and histone modifications. Previous reports only compared a small number of profiles, and little has been done to compare histone modification profiles generated by the two technologies or to assess the impact of input DNA libraries in ChIP-seq analysis. Here, we performed a systematic analysis of a modENCODE dataset consisting of 31 pairs of ChIP-chip/ChIP-seq profiles of the coactivator CBP, RNA polymerase II (RNA PolII), and six histone modifications across four developmental stages of <it>Drosophila melanogaster</it>.</p> <p>Results</p> <p>Both technologies produce highly reproducible profiles within each platform, ChIP-seq generally produces profiles with a better signal-to-noise ratio, and allows detection of more peaks and narrower peaks. The set of peaks identified by the two technologies can be significantly different, but the extent to which they differ varies depending on the factor and the analysis algorithm. Importantly, we found that there is a significant variation among multiple sequencing profiles of input DNA libraries and that this variation most likely arises from both differences in experimental condition and sequencing depth. We further show that using an inappropriate input DNA profile can impact the average signal profiles around genomic features and peak calling results, highlighting the importance of having high quality input DNA data for normalization in ChIP-seq analysis.</p> <p>Conclusions</p> <p>Our findings highlight the biases present in each of the platforms, show the variability that can arise from both technology and analysis methods, and emphasize the importance of obtaining high quality and deeply sequenced input DNA libraries for ChIP-seq analysis.</p
Assessment of the Food Habits of the Moroccan Dorcas Gazelle in M’Sabih Talaa, West Central Morocco, Using the trnL Approach
Food habits of the Moroccan dorcas gazelle, Gazella dorcas massaesyla, previously investigated in the 1980s using microhistological fecal analysis, in the M’Sabih Talaa Reserve, west central Morocco, were re-evaluated over three seasons (spring, summer and autumn 2009) using the trnL approach to determine the diet composition and its seasonal variation from fecal samples. Taxonomic identification was carried out using the identification originating from the database built from EMBL and the list of plant species within the reserve. The total taxonomic richness in the reserve was 130 instead of 171 species in the 1980s. The diet composition revealed to be much more diversified (71 plant taxa belonging to 57 genus and 29 families) than it was 22 years ago (29 identified taxa). Thirty-four taxa were newly identified in the diet while 13 reported in 1986–87 were not found. Moroccan dorcas gazelle showed a high preference to Acacia gummifera, Anagallis arvensis, Glebionis coronaria, Cladanthus arabicus, Diplotaxis tenuisiliqua, Erodium salzmannii, Limonium thouini, Lotus arenarius and Zizyphus lotus. Seasonal variations occurred in both number (40–41 taxa in spring-summer and 49 taxa in autumn vs. respectively 23–22 and 26 in 1986–1987) and taxonomic type of eaten plant taxa. This dietary diversification could be attributed either to the difference in methods of analysis, trnL approach having a higher taxonomic resolution, or a potential change in nutritional quality of plants over time
Oxidative Stress and Vascular Function: Implications for Pharmacologic Treatments
Production of considerable amounts of reactive oxygen species (ROS) eventually leads to oxidative stress. A key role of oxidative stress is evident in the pathologic mechanisms of endothelial dysfunction and associated cardiovascular diseases. Vascular enzymes such as NADPH oxidases, xanthine oxidase, and uncoupled endothelial nitric oxide synthase are involved in the production of ROS. The question remains whether pharmacologic approaches can effectively combat the excessive ROS production in the vasculature. Interestingly, existing registered cardiovascular drugs can directly or indirectly act as antioxidants, thereby preventing the damaging effects of ROS. Moreover, new compounds targeting NADPH oxidases have been developed. Finally, food-derived compounds appear to be effective inhibitors of oxidative stress and preserve vascular function
Pain perception in Parkinson’s disease: A systematic review and meta-analysis of experimental studies
While hyperalgesia (increased pain sensitivity) has been suggested to contribute to the increased prevalence of clinical pain in Parkinson’s disease (PD), experimental research is equivocal and mechanisms are poorly understood. We conducted a meta-analysis of studies comparing PD patients to healthy controls (HCs) in their response to experimental pain stimuli. Articles were acquired through systematic searches of major databases from inception until 10/2016. Twenty-six studies met inclusion criteria, comprising 1292 participants (PD = 739, HCs = 553). Random effects meta-analysis of standardized mean differences (SMD) revealed lower pain threshold (indicating hyperalgesia) in PD patients during unmedicated OFF states (SMD = 0.51) which was attenuated during dopamine-medicated ON states (SMD = 0.23), but unaffected by age, PD duration or PD severity. Analysis of 6 studies employing suprathreshold stimulation paradigms indicated greater pain in PD patients, just failing to reach significance (SMD = 0.30, p= = 0.06). These findings (a) support the existence of hyperalgesia in PD, which could contribute to the onset/intensity of clinical pain, and (b) implicate dopamine deficiency as a potential underlying mechanism, which may present opportunities for the development of novel analgesic strategies
- …