24,722 research outputs found
An equation of state for oxygen and nitrogen
Recent measurements of thermodynamic properties of oxygen and nitrogen have provided data necessary for development of a single equation of state for both fluids. Data are available in summary report and two-part detailed study on thermodynamic properties of oxygen and nitrogen. Same data are used to develop vapor-pressure equation and heat-capacity equation
Micro-geographic risk factors for malarial infection.
BACKGROUND: Knowledge of geography is integral to the study of insect-borne infectious disease such as malaria. This study was designed to evaluate whether geographic parameters are associated with malarial infection in the East Sepik province of Papua New Guinea (PNG), a remote area where malaria is a major cause of morbidity and mortality.
METHODS: A global positioning system (GPS) unit was used at each village to collect elevation, latitude and longitude data. Concurrently, a sketch map of each village was generated and the villages were sub-divided into regions of roughly equal populations. Blood samples were taken from subjects in each region using filter paper collection. The samples were later processed using nested PCR for qualitative determination of malarial infection. The area was mapped using the GPS-information and overlaid with prevalence data. Data tables were examined using traditional chi square statistical techniques. A logistic regression analysis was then used to determine the significance of geographic risk factors including, elevation, distance from administrative centre and village of residence.
RESULTS: Three hundred and thirty-two samples were included (24% of the total estimated population). Ninety-six were positive, yielding a prevalence of 29%. Chi square testing within each village found a non-random distribution of cases across sub-regions (p < 0.05). Multivariate logistic regression techniques suggested malarial infection changed with elevation (OR = 0.64 per 10 m, p < 0.05) and distance from administrative centre (OR = 1.3 per 100 m, p < 0.05).
CONCLUSION: These results suggest that malarial infection is significantly and independently associated with lower elevation and greater distance from administrative centre in a rural area in PNG. This type of analysis can provide information that may be used to target specific areas in developing countries for malaria prevention and treatment
The thermodynamic properties of oxygen and nitrogen. Part 2: Thermodynamic properties of oxygen from 100 R to 600 R with pressure to 5000 psia
An equation of state is presented for liquid and gaseous oxygen for temperatures from 100 R to 600 R and pressures to 5000 psia. The pressure-density-temperature data available from the published literature have been reviewed, and appropriate corrections have been applied to bring experimental temperatures into accord with the International Practical Temperature Scale of 1968. Representative comparisons of property values calculated from the equation of state to measured values are included to illustrate the accuracy of the equation of state. The coefficients of the equation of state were determined by a weighted least squares fit to selected published data, and simultaneously to isochoric heat capacity data, and to data which define the phase equilibrium for the saturated liquid and saturated vapor. The equation of state is estimated to be accurate for the liquid to within 0.1 percent in density, to within 0.2 percent for the vapor below the critical temperature and for states above the critical temperatures to 250 K, and within 0.1 percent for supercritical states at temperatures from 250 K to 300 K. The vapor pressure equation is accurate to within + or - 0.01 K between the triple point and the critical point
An equation of state for oxygen and nitrogen
Preliminary equations of state are presented for oxygen and nitrogen which provide accurate representations of the available P-density-T data for both fluids. The equation for nitrogen is applicable for temperatures from 70 K to 1300 K at pressures to 10,000 atmospheres, and the equation for oxygen for temperatures from 70 K to 323 K at pressures to 350 atmospheres. Deviations of calculated densities from representative experimental data are included. A volume-explicit equation of state for oxygen to be used in estimating density values in the range of applicability of the equation of state is also presented
The thermodynamic properties of oxygen and nitrogen. Part 1: Thermodynamic properties of nitrogen from 115 R to 3500 R with pressures to 150000 psia
An equation of state is presented for liquid and gaseous nitrogen for temperatures from 115 R to 3500 R and pressures to 150,000 psia. All of the pressure-density-temperature data available from the published literature have been reviewed, and appropriate corrections have been identified and applied to bring experimental temperatures into accord with the International Practical Temperature Scale of 1968. Comparisons of property values calculated from the equation of state to measured values are included to illustrate the accuracy of the equation in representing the data. The coefficients of the equation of state were determined by a weighted least squares fit to selected published data and, simultaneously, to constant volume data determined by corresponding states analysis from oxygen data, and to data which define the phase equilibrium criteria for the saturated liquid and saturated vapor. The methods of weighting the various data for simultaneous fitting are presented and discussed. The equation of state is estimated to be accurate to within 0.5 percent in the liquid region, to within 0.1 percent for supercritical isotherms up to 15,000 psia, and to within 0.3 percent from 15,000 to 150,000 psia
Noise transmission through plates into an enclosure
An analytical model is presented to predict noise transmission through elastic plates into a hard-walled rectangular cavity at low frequencies, that is, frequencies up through the first few plate and cavity natural frequencies. One or several nonoverlapping and independently vibrating panels are considered. The effects on noise transmission of different external-pressure excitations, plate boundary conditions, fluid parameters, structural parameters, and geometrical parameters were investigated
Performance, emissions, and physical characteristics of a rotating combustion aircraft engine, supplement A
Testing was conducted using the basic RC2-75 engine, to which several modifications were incorporated which were designed to reduce the hydrocarbon emissions and reduce the specific fuel consumption. The modifications included close-in surface gap spark plugs, increased compression ratio rotors, and provisions for utilizing either side or peripheral intake ports, or a combination of the two if required. The proposed EPA emissions requirements were met using the normal peripheral porting. The specific fuel economy demonstrated for the modified RC2-75 was 283 g/kW-hr at 75% power and 101 brake mean effective pressure (BMEP) and 272.5 g/kW-hr at 75% power and 111 BMEP. The latter would result from rating the engine for takeoff at 285 hp and 5500 rpm, instead of 6000 rpm
Archive data base and handling system for the Orbiter flying qualities experiment program
The OFQ archives data base and handling system assembled as part of the Orbiter Flying Qualities (OFQ) research of the Orbiter Experiments Program (EOX) are described. The purpose of the OFQ archives is to preserve and document shuttle flight data relevant to vehicle dynamics, flight control, and flying qualities in a form that permits maximum use for qualified users. In their complete form, the OFQ archives contain descriptive text (general information about the flight, signal descriptions and units) as well as numerical time history data. Since the shuttle program is so complex, the official data base contains thousands of signals and very complex entries are required to obtain data. The OFQ archives are intended to provide flight phase oriented data subsets with relevant signals which are easily identified for flying qualities research
Liquid-Drop Model and Quantum Resistance Against Noncompact Nuclear Geometries
The importance of quantum effects for exotic nuclear shapes is demonstrated.
Based on the example of a sheet of nuclear matter of infinite lateral
dimensions but finite thickness, it is shown that the quantization of states in
momentum space, resulting from the confinement of the nucleonic motion in the
conjugate geometrical space, generates a strong resistance against such a
confinement and generates restoring forces driving the system towards compact
geometries. In the liquid-drop model, these quantum effects are implicitly
included in the surface energy term, via a choice of interaction parameters, an
approximation that has been found valid for compact shapes, but has not yet
been scrutinized for exotic shapes.Comment: 9 pages with 3 figure
Black Holes with a Generalized Gravitational Action
Microscopic black holes are sensitive to higher dimension operators in the
gravitational action. We compute the influence of these operators on the
Schwarzschild solution using perturbation theory. All (time reversal invariant)
operators of dimension six are included (dimension four operators don't alter
the Schwarzschild solution). Corrections to the relation between the Hawking
temperature and the black hole mass are found. The entropy is calculated using
the Gibbons-Hawking prescription for the Euclidean path integral and using
naive thermodynamic reasoning. These two methods agree, however, the entropy is
not equal to 1/4 the area of the horizon.Comment: plain tex(uses phyzzx.tex), 8 pages, CALT-68-185
- …