149 research outputs found

    Real-time dynamics of lattice gauge theories with a few-qubit quantum computer

    Get PDF
    Gauge theories are fundamental to our understanding of interactions between the elementary constituents of matter as mediated by gauge bosons. However, computing the real-time dynamics in gauge theories is a notorious challenge for classical computational methods. In the spirit of Feynman's vision of a quantum simulator, this has recently stimulated theoretical effort to devise schemes for simulating such theories on engineered quantum-mechanical devices, with the difficulty that gauge invariance and the associated local conservation laws (Gauss laws) need to be implemented. Here we report the first experimental demonstration of a digital quantum simulation of a lattice gauge theory, by realising 1+1-dimensional quantum electrodynamics (Schwinger model) on a few-qubit trapped-ion quantum computer. We are interested in the real-time evolution of the Schwinger mechanism, describing the instability of the bare vacuum due to quantum fluctuations, which manifests itself in the spontaneous creation of electron-positron pairs. To make efficient use of our quantum resources, we map the original problem to a spin model by eliminating the gauge fields in favour of exotic long-range interactions, which have a direct and efficient implementation on an ion trap architecture. We explore the Schwinger mechanism of particle-antiparticle generation by monitoring the mass production and the vacuum persistence amplitude. Moreover, we track the real-time evolution of entanglement in the system, which illustrates how particle creation and entanglement generation are directly related. Our work represents a first step towards quantum simulating high-energy theories with atomic physics experiments, the long-term vision being the extension to real-time quantum simulations of non-Abelian lattice gauge theories

    Sensor element for a metal-insulator-semiconductor camera system (MISCam)

    Get PDF
    We discuss the operation of a new type of optical sensor (MISCam) based on a metal-insulator-semiconductor (MIS) structure. The operation principle relies on light-induced changes of the band bending and barrier height at the interface between semiconductor and insulator. An image is obtained from the quenching of the ac signal in analogy to the principle of the laser-scanned photodiode (LSP). Lateral resolution depends on the semiconductor material chosen. We have characterised the MIS structures by C-V, I-V, and spectral response measurements testing different types of insulators like a-Si3N4, SiO2, and AlN. The presence of slow interface charges allows for image memory. Colour sensors can be realised by controlling sign and magnitude of the electric fields in the base and the interface region

    On the inertia of heat

    Full text link
    Does heat have inertia? This question is at the core of a long-standing controversy on Eckart's dissipative relativistic hydrodynamics. Here I show that the troublesome inertial term in Eckart's heat flux arises only if one insists on defining thermal diffusivity as a spacetime constant. I argue that this is the most natural definition, and that all confusion disappears if one considers instead the space-dependent comoving diffusivity, in line with the fact that, in the presence of gravity, space is an inhomogeneous medium.Comment: 3 page

    Information theory in the study of anisotropic radiation

    Full text link
    Information theory is used to perform a thermodynamic study of non equilibrium anisotropic radiation. We limit our analysis to a second-order truncation of the moments, obtaining a distribution function which leads to a natural closure of the hierarchy of radiative transfer equations in the so-called variable Eddington factor scheme. Some Eddington factors appearing in the literature can be recovered as particular cases of our two-parameter Eddington factor. We focus our attention in the study of the thermodynamic properties of such systems and relate it to recent nonequilibrium thermodynamic theories. Finally we comment the possibility of introducing a nonequilibrium chemical potential for photons.Comment: 1 eps figure upon request by e-mail, to appear in Journal of Physics

    A Variational Procedure for Time-Dependent Processes

    Full text link
    A simple variational Lagrangian is proposed for the time development of an arbitrary density matrix, employing the "factorization" of the density. Only the "kinetic energy" appears in the Lagrangian. The formalism applies to pure and mixed state cases, the Navier-Stokes equations of hydrodynamics, transport theory, etc. It recaptures the Least Dissipation Function condition of Rayleigh-Onsager {\bf and in practical applications is flexible}. The variational proposal is tested on a two level system interacting that is subject, in one instance, to an interaction with a single oscillator and, in another, that evolves in a dissipative mode.Comment: 25 pages, 4 figure

    Measurement schemes for the spin quadratures on an ensemble of atoms

    Full text link
    We consider how to measure collective spin states of an atomic ensemble based on the recent multi-pass approaches for quantum interface between light and atoms. We find that a scheme with two passages of a light pulse through the atomic ensemble is efficient to implement the homodyne tomography of the spin state. Thereby, we propose to utilize optical pulses as a phase-shifter that rotates the quadrature of the spins. This method substantially simplifies the geometry of experimental schemes.Comment: 4pages 2 figure

    Simulating open quantum systems: from many-body interactions to stabilizer pumping

    Get PDF
    In a recent experiment, Barreiro et al. demonstrated the fundamental building blocks of an open-system quantum simulator with trapped ions [Nature 470, 486 (2011)]. Using up to five ions, single- and multi-qubit entangling gate operations were combined with optical pumping in stroboscopic sequences. This enabled the implementation of both coherent many-body dynamics as well as dissipative processes by controlling the coupling of the system to an artificial, suitably tailored environment. This engineering was illustrated by the dissipative preparation of entangled two- and four-qubit states, the simulation of coherent four-body spin interactions and the quantum non-demolition measurement of a multi-qubit stabilizer operator. In the present paper, we present the theoretical framework of this gate-based ("digital") simulation approach for open-system dynamics with trapped ions. In addition, we discuss how within this simulation approach minimal instances of spin models of interest in the context of topological quantum computing and condensed matter physics can be realized in state-of-the-art linear ion-trap quantum computing architectures. We outline concrete simulation schemes for Kitaev's toric code Hamiltonian and a recently suggested color code model. The presented simulation protocols can be adapted to scalable and two-dimensional ion-trap architectures, which are currently under development.Comment: 27 pages, 9 figures, submitted to NJP Focus on Topological Quantum Computatio

    Postoperative spinal infection mimicking systemic vasculitis with titanium-spinal implants

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Secondary systemic vasculitis after posterior spinal fusion surgery is rare. It is usually related to over-reaction of immune-system, to genetic factors, toxicity, infection or metal allergies.</p> <p>Case Description</p> <p>A 14 year-old girl with a history of extended posterior spinal fusion due to idiopathic scoliosis presented to our department with diffuse erythema and nephritis (macroscopic hemuresis and proteinuria) 5 months post surgery. The surgical trauma had no signs of inflammation or infection. The blood markers ESR and CRP were increased. Skin tests were positive for nickel allergy, which is a content of titanium alloy. The patient received corticosteroids systematically (hydrocortisone 10 mg) for 6 months, leading to total recess of skin and systemic reaction. However, a palpable mass close to the surgical wound raised the suspicion of a late infection. The patient had a second surgery consisting of surgical debridement and one stage revision of posterior spinal instrumentation. Intraoperative cultures were positive to Staphylococcus aureus. Intravenous antibiotics were administered. The patient is now free of symptoms 24 months post revision surgery without any signs of recurrence of either vasculitis or infection.</p> <p>Literature Review</p> <p>Systemic vasculitis after spinal surgery is exceptionally rare. Causative factors are broad and sometimes controversial. In general, it is associated with allergy to metal ions. This is usually addressed with metal on metal total hip bearings. In spinal surgery, titanium implants are considered to be inert and only few reports have presented cases with systemic vasculitides. Therefore, other etiologies of immune over-reaction should always be considered, such as drug toxicity, infection, or genetic predisposition.</p> <p>Purposes and Clinical Relevance</p> <p>Our purpose was to highlight the difficulties during the diagnostic work-up for systemic vasculitis and management in cases of posterior spinal surgery.</p
    • …
    corecore