12 research outputs found

    Synthesis of Conjugated Polymers and Small Molecules for Organic Light-Emitting Devices and Photodetectors

    Get PDF
    Production cost and environmental impact are the two major concerns that are related to the conventional optoelectronic devices. It is desirable for the modern semiconductors that they are free of toxic/costly metals, they can be processed with low-cost solution-based methods, and their optical, electronic, and mechanical properties can be easily tuned depending on the target application. In this thesis, a range of different conjugated polymers and small molecules are designed and synthesized as semiconductors for organic light-emitting diodes (OLEDs), light-emitting electrochemical cells (LECs), and organic photodetectors (OPDs).In organic light-emitting devices, the emissive molecule is commonly mixed with a charge transporting host matrix, which can be either a small molecule or a conjugated polymer. The latter is beneficial since it does not require deposition of the emitter and matrix components in high vacuum and high temperature conditions. The polymeric materials can be dissolved and printed on a substrate of any desired size and production scale, at room temperature, and even under ambient air. The specific wavelength range of near-infrared (NIR) at λ >700 nm is of interest for a wide range of applications spanning from optical communication to biosensing. However, the low energy of NIR range poses challenges for the materials design, in terms of emission efficiency and light intensity, which are further addressed in this thesis, allowing the fabrication of high-performance NIR-OLEDs and NIR-LECs.For photodetectors, absorption of a wide spectrum of light is beneficial in biosensing and imaging applications. Low noise and fast charge extraction are necessary for the detection of light at high speeds even at low intensities. These aspects are studied in this thesis by designing new polymers with different absorption, charge transport, and morphological properties in the photoactive layer. Two polymers enabled the fabrication of visible (red) OPDs with a low dark current (the main constituent in the noise), high detectivity, and high photoresponse speed

    Low-gap zinc porphyrin as an efficient dopant for photomultiplication type photodetectors

    Get PDF
    A new zinc porphyrin, named as Por4IC, was synthesized, which through extension of conjugation and an enhancement of planarity and donor-acceptor interactions exhibits a very low band gap. The molecule was able to efficiently facilitate a photomultiplication effect in blend with P3HT which was assisted by electron trapping followed by hole tunneling injection from the Al electrode giving rise to a high external quantum efficiency of 22 182% and a specific detectivity of 4.4 7 1012 Jones at 355 nm and at -15 V bias. This work introduces porphyrin derivatives as promising dopants for photomultiplication type photodetectors. This journal i

    A porphyrin pentamer as a bright emitter for NIR OLEDs

    Get PDF
    The Luminescence and electroluminescence of an ethyne-Linked zinc(II) porphyrin pentamer have been investigated, by testing blends in two different conjugated polymer matrices, at a range of concentrations. The best results were obtained for blends with the conjugated polymer PIDT-2TPD, at a porphyrin loading of 1 wt%. This host matrix was selected because the excellent overlap between its emission spectrum and the low-energy region of the absorption spectrum of the porphyrin oligomer leads to efficient energy transfer. Thin films of this blend exhibit intense fluorescence in the near-infrared (NIR), with a peak emission wavelength of 886 nm and a photoluminescent quantum yield (PLQY) of 27% in the solid state. Light-emitting diodes (LEDs) fabricated with this blend as the emissive layer achieve average external quantum efficiencies (EQE) of 2.0% with peak emission at 830 nm and a turn-on voltage of 1.6 V. This performance is remarkable for a singlet NIR-emitter; 93% of the photons are emitted in the NIR (lambda > 700 nm), indicating that conjugated porphyrin oligomers are promising emitters for non-toxic NIR OLEDs

    Combining Benzotriazole and Benzodithiophene Host Units in Host-Guest Polymers for Efficient and Stable Near-Infrared Emission from Light-Emitting Electrochemical Cells

    No full text
    A set of host-guest copolymers with alternating benzodithiophene and benzotriazole (BTz) derivatives as host units and 4,7-bis(5-bromothiophen-2-yl)-benzo[c][1,2,5]thiadiazole as the minority guest are synthesized, characterized, and evaluated for applications. A light-emitting electrochemical cell (LEC) comprising such a host-guest copolymer delivers fast-response near-infrared (NIR) emission peaked at 723 nm with a high radiance of 169 mu W cm(-2) at a low drive voltage of 3.6 V. The NIR-LEC also features good stability, as the peak NIR output only drops by 8% after 350 h of continuous operation. It is, however, found that the LEC performance is highly sensitive to the detailed chemical structure of the host backbone, and that the addition of electron-donating thiophene bridging units onto the BTz unit is highly positive while the inclusion of fluorine atoms results in a drastically lowered performance, presumably because of the emergence of hydrogen bonding within the active material

    Intense and Stable Near-Infrared Emission from Light-Emitting Electrochemical Cells Comprising a Metal-Free Indacenodithieno[3,2-b]thiophene-Based Copolymer as the Single Emitter

    Get PDF
    We report on the synthesis, characterization, and application of a series of metal-free near-infrared (NIR) emitting alternating donor/acceptor copolymers based on indacenodithieno[3,2-b]thiophene (IDTT) as the donor unit. A light-emitting electrochemical cell (LEC), comprising a blend of the copolymer poly[indacenodithieno[3,2-b]thiophene-2,8-diyl-alt-2,3-diphenyl-5,8-di(thiophen-2-y1)- quinoxaline-5,5\u27-diy1] and an ionic liquid as the single-layer active material sandwiched between two air-stable electrodes, delivered NIR emission (lambda(peak) = 705 nm) with a high radiance of 129 mu W/cm(2) when driven by a low voltage of 3.4 V. The NIR-LEC also featured good stress stability, as manifested in that the peak NIR output from a nonencapsulated device after 24 h of continuous operation only had dropped by 3% under N-2 atmosphere and by 27% under ambient air. This work accordingly introduces IDTT-based donor/acceptor copolymers as functional metal-free electroluminescent materials in NIR-emitting devices and also provides guidelines for how future NIR emitters should be designed for further improved performance

    Open-Circuit Voltage Modulations on All-Polymer Solar Cells by Side Chain Engineering on 4,8-Di(thiophen-2-yl)benzo[1,2- b:4,5- b′]dithiophene-Based Donor Polymers

    No full text
    In recent years, all-polymer solar cells (all-PSCs), incorporating active layers based on blends of electron-donor (D) and acceptor (A) polymers, have drawn attention because of the advantages they hold in the flexibility of choosing the D:A combinations to modulate their energy levels and to improve their overall open-circuit voltages (V oc ) and power conversion efficiencies (PCE)s. V oc is one of the key parameters for the determination of the PCEs of PSCs. In this work, we synthesized six donor polymers with three different side chains appended to the 4,8-di(thiophen-2-yl)benzo[1,2-b:4,5-b′]dithiophene (BDT) units. By substituting carbon with sulfur and silicon atoms at the 5-position of the thiophenes attached to the BDT units, the highest occupied molecular orbital (HOMO) levels of the donor polymers could be successfully lowered. As anticipated, the V oc values of the resulting all-PSCs increased along with the lowering of the HOMO levels of the donor polymers. Among the six all-PSCs, the PBDT-BDD:PNDI-T10 all-PSC realized a balance between the photovoltage and photocurrent, where a decent PCE of 5.6% was obtained with a V oc of 0.9 V and a photocurrent of 10.5 mA/cm 2

    On the Design of Host–Guest Light-Emitting Electrochemical Cells: Should the Guest be Physically Blended or Chemically Incorporated into the Host for Efficient Emission?

    No full text
    It has recently been demonstrated that light-emitting electrochemical cells (LECs) can be designed to deliver strong emission with high efficiency when the charge transport is effectuated by a majority host and the emission is executed by a minority guest. A relevant question is then: should the guest be physically blended with or chemically incorporated into the host? A systematic study is presented that establishes that for near-infrared-(NIR-) emitting LECs based on poly(indacenodithieno[3,2-b]thiophene) (PIDTT) as the host and 4,7-bis(4,4-bis(2-ethylhexyl)-4H-silolo[3,2-b:4,5-b′]dithiophen-2-yl)benzo[c][1,2,5]-thiadiazole (SBS) as the guest the chemical-incorporation approach is preferable. The host-to-guest energy transfer in LEC devices is highly efficient at a low guest concentration of 0.5%, whereas guest aggregation and ion redistribution during device operation severly inhibits this transfer in the physical-blend devices. The chemical-incorporation approach also results in a redshifted emission with a somewhat lowered photoluminescence quantum yield, but the LEC performance is nevertheless very good. Specifically, an NIR-LEC device comprising a guest-dilute (0.5 molar%) PIDTT-SBS copolymer delivers highly stabile operation at a high radiance of 263 \ub5W cm−2 (peak wavelength = 725 nm) and with an external quantum efficiency of 0.214%, which is close to the theoretical limit for this particular emitter and device geometry

    Triazolobenzothiadiazole-Based Copolymers for Polymer Light-Emitting Diodes: Pure Near-Infrared Emission via Optimized Energy and Charge Transfer

    No full text
    \ua9 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.A series of new near-infrared (NIR) emitting copolymers, based on a low band gap 6-(2-butyloctyl)-4,8-di(thiophen-2-yl)-[1,2,3]triazolo[4\u27,5\u27:4,5]benzo[1,2-c]-[1,2,5]thiadiazole (TBTTT) fluorophore copolymerized into a high band gap poly[3,3\u27-ditetradecyl-2,2\u27-bithiophene-5,5\u27-diyl-alt-5-(2-ethylhexyl)-4H-thieno[3,4-c]pyrrole-4,6(5H)-dione-1,3-diyl] (P2TTPD) host backbone, for polymer light-emitting diode (PLED) applications is reported. PLEDs fabricated from the host polymer (P2TTPD-0) show external quantum efficiencies (EQEs) up to 0.49% at 690 nm, with turn-on voltage (Von) at only 2.4 V. By incorporating the TBTTT segments into the host polymer backbone, pure NIR emission peaking at ca. 900 nm is obtained with Von remaining below 5 V. This work demonstrates that such a low Von can be attributed to efficient intrachain energy and/or charge transfer to the TBTTT sites. When the NIR emitting copolymer (P2TTPD-10) is blended with P2TTPD-0, the TBTTT are confined to well-separated polymer chains. As a result, the EQE from the blend is lower and the Von higher than that obtained from the pure copolymer (P2TTPD-1.0) with equal content of TBTTT. An analogous copolymer (P4T-1.0), consisting of poly[3,3\u27-ditetradecyl-2,2\u27:5\u27,2\u27\u27:5\u27\u27,2\u27\u27\u27-quaterthiophene-5,5\u27\u27\u27-diyl] (P4T) as the host and 1% TBTTT as the NIR emitter, further demonstrates that pure NIR emission can be obtained only through optimized molecular orbital energy levels, as in P2TTPD-1.0, which minimizes chances for either charge trapping or exciton splitting

    Star-Shaped Diketopyrrolopyrrole-Zinc Porphyrin that Delivers 900 nm Emission in Light-Emitting Electrochemical Cells

    No full text
    The development and application of a deep near-infrared (NIR) emitting star-shaped diketopyrrolopyrrole-Zn-porphyrin compound, ZnP(TDPP)4, is reported. The structure, conjugation, and planarity of the porphyrin compound were carefully tuned by molecular design, which resulted in a low-energy photoluminescence peak at 872 nm. The ZnP(TDPP)4 compound was employed as the emissive guest in light-emitting electrochemical cells (LECs), which also comprised the conjugated polymer poly[1,3-bis(2-ethylhexyl)-5-(5-(6-methyl-4,8-bis(5-(tributylsilyl)thiophen-2-yl)benzo[1,2-b:4,5-b′]dithiophen-2-yl)thiophen-2-yl)-7-(5-methylthiophen-2-yl)-4H,8H-benzo[1,2-c:4,5-c′]dithiophene-4,8-dione] (PBDTSi-BDD) as the majority host, an ionic liquid as the electrolyte, and two air-stabile electrodes. These systematically optimized host-guest LECs featured a peak electroluminescence at 900 nm, which was delivered at a significant radiance of 36 μW/cm2 and at a low drive voltage of 3.8 V. It is notable that this is the most redshifted NIR emission attained from an LEC device to date, and as such, this work introduces Zn porphyrins as a sustainable and tunable option for emerging emissive NIR applications

    Hybrid Super-Nyquist CAP Modulation based VLC with Low Bandwidth Polymer LEDs

    Get PDF
    Visible light communication systems often suffer from high frequency attenuation when transmitting out-of-band. This effect has been ameliorated by multi-band modulations such as multi-band carrier-less amplitude and phase (m-CAP), which minimises the effect of decreased high frequency magnitude and maximises signal-to-noise ratio-per-sub-band. On the other hand, in the pass-band region, super-Nyquist CAP (SCAP) can offer throughput improvements with no additional complexity at the receiver, at the cost of bit error rate. We propose, for the first time, a new hybrid SCAP modulation format that takes advantageous of both SCAP (i.e. overlapped sub-bands within the modulation bandwidth) and conventional m-CAP (orthogonally spaced bands outside the modulation bandwidth) while maintaining isolation between noise sources. We show higher baud rates within the passband region whilst supporting out-of-band transmission at lower error vector magnitudes
    corecore