103 research outputs found

    Lignopolymers As Viscosity-Reducing Additives in Magnesium Oxide Suspensions

    Get PDF
    Lignopolymers are a new class of polymer additives with the capability to be used as dispersants in cementitious pastes. Made with kraft lignin cores and grafted polymer side- chains, the custom-synthesized lignopolymers were examined in terms of the molecular architecture for viscosity reducing potential in inert model suspensions. Lignin-poly(acrylic acid) (LPAA) and lignin-polyacrylamide (LPAm) have been found to vary the rheology of magnesium oxide (MgO) suspensions based on differences in chain architecture and particle- polymer interactions. A commercial comb-polymer polycarboxylate ester was compared to LPAA and LPAm at 2.7 mg/mL, a typical dosage for cement admixtures, as well as 0.25 mg/mL. It was found that LPAm was a more effective viscosity reducer than both LPAA and the commercial additive at low concentrations, which was attributed to greater adsorption on the MgO particle surface and increased steric dispersion from PAm side-chain extension. The influence of chain adsorption and grafted side-chain molecular weight on rheology was also tested

    Sandstones and Utah’s canyon country: Deposition, diagenesis, exhumation, and landscape evolution

    Get PDF
    South-central Utah’s prominent sandstones and deeply dissected landscapes are the focus of this four-day trip, which begins and ends in Grand Junction, Colorado. Studies of the apatite grains in sandstones adjacent to igneous intrusions are revealing new information on the timing and rate of Cenozoic erosion. Iron-oxide-cemented concretions in other rocks record how reduced-iron carbonates and subsurface microbes interacted when near-surface, oxygenated waters started to flush the reducing, CO2-rich waters from Colorado Plateau aquifers. New geochronologic techniques that are being applied to the plateau rocks have the potential to expand our knowledge of how diagenetic episodes relate to the evolving topography of this classic geologic setting

    Rheological Investigation of the Shear Strength, Durability, and Recovery of Alginate Rafts Formed By Antacid Medication in Varying pH Environments

    Get PDF
    The mechanical response of alginate rafts formed by mixing liquid alginate antacid medication (Gaviscon® Extra Strength Liquid Antacid) with acidic solutions was investigated by deforming isolated rafts in a shear rheometer. As rafts were deformed to varying magnitudes of applied strain, rheological parameters were identified and related to the overall strength, durability, and recoverability of rafts formed at different pH (1.1 – 1.7) and aging conditions (0.5 – 4 hr). Rafts formed in the lowest acidity solutions (pH 1.4, 1.7) were elastically weak (G0’ = 60, 42 Pa for un-aged raft) yet maintained their elasticity during applied shear deformation to large values of strain (γc~ 90%, 50%, where G’ ≈ G’’), and displayed a low-to-moderate level of elastic recovery following large-strain deformation. Rafts formed in the highest acidity solution had the greatest strength (G0’ = 500 Pa for un-aged raft and 21.5 kPa for rafts after 0.5 hr of aging), reduced durability (γc~ 2.5%, independent of aging), and displayed the greatest recoverability. A trade-off existed between un-aged raft strength and durability while recovery was dependent on durability, solution pH, and age. Rheometry-based evaluations of alginate rafts could be used for the informed design of future gastric retention and antacid products

    Technical Note: Benchmark time-temperature paths provide a shared framework for evaluating and communicating thermochronologic data interpretation

    Get PDF
    We present a set of six time-temperature (tT) histories, called benchmark paths, that can be used as a shared framework for evaluating the sensitivity of a thermochronologic system to the variables inherent in the interpretation of thermochronologic data (e.g., kinetics models, mineral compositions or geometries, etc.). These benchmark paths span 100 Myr, include monotonic and nonmonotonic histories that represent plausible geologic scenarios, and have a range of cooling rates through different chronometer partial-retention/annealing temperatures. Here, we demonstrate their utility by presenting a method for tuning these paths to 11 different kinetics models for the apatite (U-Th-Sm)/He (n=5), apatite fission-track (n=2), and zircon (U-Th)/He (n=4) systems. These tuned tT paths provide a practical comparison of the kinetics models for each system and the data patterns they predict, thereby offering anyone performing thermal history analysis the ability to consider how their choice of kinetics model may impact their data interpretation. The adoption of benchmark paths for evaluating kinetics models and other variables provides a practical way for the thermochronology community to evaluate and communicate the decision making processes that are inherent in thermochronologic modeling and data interpretation

    Influence of Adsorbed and Nonadsorbed Polymer Additives on The Viscosity of Magnesium Oxide Suspensions

    Get PDF
    Adsorbed polymer additives have been employed to reduce water content and improve cement workability through lowering viscosity, but the influence of over-dosage and the presence of nonadsorbed chains have yet to be fully understood. Model magnesium oxide (MgO) suspensions were used to investigate the potential processing effect of “free” chain concentration on cementitious mixtures. The rheological impact of the free chains was measured through incorporation of nonadsorbing poly(ethylene glycol) (PEG) to suspensions stabilized with an adsorbed comb-polymer superplasticizer. Analyses of the rheological data, that showed viscosity-increases and viscosity-reduction due to free PEG concentrations revealed a transition from depletion flocculation to depletion stabilization that contributed to the flow properties of the suspensions. The viscosity-reduction observed for high concentrations of free chains may be useful for improved mixing of cements with free polymer in addition to the adsorbed polycarboxylate etherbased superplasticizer. Additionally, the influence of free PEG on the macroscale flow behavior was also examined through local velocity measurements under shear

    Bayesian Markov-Chain Monte Carlo Inversion of Low-Temperature Thermochronology Around Two 8 − 10 m Wide Columbia River Flood Basalt Dikes

    Get PDF
    Flood basalt volcanism involves large volumes of magma emplaced into the crust and surface environment on geologically short timescales. The mechanics of flood basalt emplacement, including dynamics of the crustal magma transport system and the tempo of individual eruptions, are not well-constrained. Here we study two exhumed dikes from the Columbia River Flood Basalt province in northeast Oregon, USA, using apatite and zircon (U-Th)/He thermochronology to constrain dike emplacement histories. Sample transects perpendicular to the dike margins document transient heating of granitic host rocks. We model heating as due to dike emplacement, considering a thermal model with distinct melt-fraction temperature relationships for basaltic magma and granitic wallrock, and a parameterization of unsteady flow within the dike. We model partial resetting of thermochronometers by considering He diffusion in spherical grains as a response to dike heating. A Bayesian Markov-Chain Monte Carlo framework is used to jointly invert for six parameters related to dike emplacement and grain-scale He diffusion. We find that the two dikes, despite similar dimensions on an outcrop scale, exhibit different spatial patterns of thermochronometer partial resetting away from the dike. These patterns predict distinct emplacement histories. We extend previous modeling of a presumed feeder dike at Maxwell Lake in the Wallowa Mountains of northeastern Oregon, finding posterior probability distribution functions (PDFs) that predict steady heating from sustained magma flow over 1–6 years and elevated farfield host rock temperatures. This suggests regional-scale heating in the vicinity of Maxwell Lake, which might arise from nearby intrusions. The other dike, within the Cornucopia subswarm, is predicted to have a 1–4 year thermally active lifespan with an unsteady heating rate suggestive of low magma flow rate compared to Maxwell Lake, in a cool near-surface thermal environment. In both cases, misfit of near-dike partial resetting of thermochronometers by models suggests either heat transfer via fluid advection in host rocks or pulsed magma flow in the dikes. Our results highlight the diversity of dike emplacement histories within the Columbia River Flood Basalt province and the power of Bayesian inversion methods for quantifying parameter trade-offs and uncertainty in thermal models

    Detrital-Zircon Geochronology of the Metasedimentary Rocks of North-Western Graham Land

    Get PDF
    Metasedimentary rocks constitute an important but comparatively poorly understood part of the Antarctic Peninsula. Herein we report single-grain U-Pb detrital-zircon ages from samples of the Trinity Peninsula and Botany Bay Groups of north-western Graham Land. All studied samples are dominated by a large and narrowly defined population of late Palaeozoic zircons. Significant early–middle Palaeozoic and minor Neoproterozoic and Mesoproterozoic sub-populations constitute the majority of pre-Carboniferous grains. These detrital-zircon age populations are consistent with sediment derivation entirely from western Gondwana sources. Despite the clear Gondwana signatures, our data suggest that the Trinity Peninsula Group province was either a parautochthonous peri-Gondwanan terrane later accreted to the Antarctic Peninsula, or a significant topographic barrier precluded voluminous sediment contributions from the interior of Gondwana. Statistical comparisons with similar metasedimentary complexes of southern South America, the South Shetland Islands and eastern New Zealand indicate a diversity of sediment provenance not previously recognized, but may provide a means to better determine the pre-break-up configuration of western Gondwana. Although insufficient to definitively restore Antarctic Peninsula components adjacent to South American complexes, some Trinity Peninsula Group samples exhibit robust affinities to the Miers Bluff Formation in the South Shetland Islands and the Duque de York and Main Range Metamorphic Complexes of the Patagonian Andes

    Thermal history modeling techniques and interpretation strategies: applications using HeFTy

    Get PDF
    Advances in low-temperature thermochronology, and the wide range of geologic problems that it is used to investigate, have prompted the routine use of thermal history (time-temperature, tT) models to quantitatively explore and evaluate rock cooling ages. As a result, studies that investigate topics ranging from Proterozoic tectonics to Pleistocene erosion now commonly require a substantial numerical modeling effort that combines the empirical understanding of chronometer thermochemical behavior (kinetics) with independent knowledge or hypotheses about a study area’s geologic history (geologic constraints). Although relatively user-friendly programs, such as HeFTy and QTQt, are available to facilitate thermal history modeling, there is a critical need to provide the geoscience community with more accessible entry points for using these tools. This contribution addresses this need by offering an explicit discussion of modeling strategies in the program HeFTy. Using both synthetic data and real examples, we illustrate the opportunities and limitations of thermal history modeling. We highlight the importance of testing the sensitivity of model results to model design choices and describe a strategy for classifying model results that we call the Path Family Approach. More broadly, we demonstrate how HeFTy can be used to build an intuitive understanding of the thermochronologic data types and model design strategies that are capable of discriminating among geologic hypotheses

    Thermal history modeling techniques and interpretation strategies: applications using QTQt

    Get PDF
    Advances in low-temperature thermochronology have made it applicable to a plethora of geoscience investigations. The development of modeling programs (e.g., QTQt and HeFTy) that extract thermal histories from thermochronologic data has facilitated growth of this field. However, the increasingly wide range of scientists who apply these tools requires an accessible entry point to thermal history modeling and how these models develop our understanding of complex geological processes. This contribution offers a discussion of modeling strategies, using QTQt, including making decisions about model design, data input, kinetic parameters, and other factors that may influence the model output. We present a suite of synthetic data sets derived from known thermal histories with accompanying tutorial exercises in the Supplemental Material. These data sets illustrate the opportunities and limitations of thermal history modeling. Examining these synthetic data helps to develop intuition about which thermochronometric data are most sensitive to different thermal events and to what extent user decisions on data handling and model setup can control the recovery of the true solution. We also use real data to demonstrate the importance of incorporating sensitivity testing into thermal history modeling and suggest several best practices for exploring model sensitivity to factors including, but not limited to, the model design or inversion algorithm, geologic constraints, data trends, the spatial relationship between samples, or the choice of kinetics model. Finally, we provide a detailed and explicit workflow and an applied example for a method of interrogating vague model results or low observation-prediction fits that we call the “Path Structure Approach.” Our explicit examination of thermal history modeling practices is designed to guide modelers to identify the factors controlling model results and demonstrate reproducible approaches for the interpretation of thermal histories

    A Moving Target: How We Define Avoidant/Restrictive Food Intake Disorder Can Double Its Prevalence

    Get PDF
    OBJECTIVE: The DSM-5 criteria for avoidant/restrictive food intake disorder (ARFID) include ambiguities. Diagnostic criteria that allow for clinical judgment are essential for clinical practice. However, ambiguities can have major implications for treatment access and comparability and generalizability of research studies. The purpose of this study was to determine the degree to which distinct operationalizations of the diagnostic criteria for ARFID contribute to differences in the frequency of individuals who are eligible for the ARFID diagnosis. METHODS: Because criteria B, C, and D are rule-outs, we focused on criterion A, identified 19 potential operational definitions, and determined the extent to which these different methods impacted the proportion of individuals who met criteria for ARFID in a sample of children, adolescents, and young adults (n = 80; September 2016–February 2020) enrolled in an avoidant/restrictive eating study. RESULTS: Within each criterion, the proportion of individuals meeting diagnostic criteria differed significantly across the methodologies (all P values < .008). Using the strictest definition of each criterion, 50.0% (n = 40) of participants met criteria for ARFID. In contrast, under the most lenient definition of each criterion, the number nearly doubled, resulting in 97.5% (n = 78) meeting ARFID criteria. CONCLUSIONS: Comparison of diagnostic definitions for ARFID among children, adolescents, and young adults confirmed a broad range of statistically distinct proportions within a single sample. Our findings support the need for additional contextual support and consensus among disciplines on operationalization in both research and clinical settings
    corecore