28,998 research outputs found
Jet Modification in a Brick of QGP Matter
We have implemented the LPM effect into a microscopic transport model with
partonic degrees of freedom by following the algorithm of Zapp & Wiedemann. The
Landau-Pomeranchuk-Migdal (LPM) effect is a quantum interference process that
modifies the emission of radiation in the presence of a dense medium. In QCD
this results in a quadratic length dependence for radiative energy loss. This
is an important effect for the modification of jets by their passage through
the QGP.
We verify the leading parton energy loss in the model against the leading
order Baier-Dokshitzer-Mueller-Peigne-Schiff-Zakharov (BDMPS-Z) result.
We apply our model to the recent observations of the modification of di-jets
at the LHC.Comment: Presented at Panic 1
Gravitational Waves from Axisymmetric, Rotational Stellar Core Collapse
We have carried out an extensive set of two-dimensional, axisymmetric,
purely-hydrodynamic calculations of rotational stellar core collapse with a
realistic, finite-temperature nuclear equation of state and realistic massive
star progenitor models. For each of the total number of 72 different
simulations we performed, the gravitational wave signature was extracted via
the quadrupole formula in the slow-motion, weak-field approximation. We
investigate the consequences of variation in the initial ratio of rotational
kinetic energy to gravitational potential energy and in the initial degree of
differential rotation. Furthermore, we include in our model suite progenitors
from recent evolutionary calculations that take into account the effects of
rotation and magnetic torques. For each model, we calculate gravitational
radiation wave forms, characteristic wave strain spectra, energy spectra, final
rotational profiles, and total radiated energy. In addition, we compare our
model signals with the anticipated sensitivities of the 1st- and 2nd-generation
LIGO detectors coming on line. We find that most of our models are detectable
by LIGO from anywhere in the Milky Way.Comment: 13 pages, 22 figures, accepted for publication in ApJ (v600, Jan.
2004). Revised version: Corrected typos and minor mistakes in text and
references. Minor additions to the text according to the referee's
suggestions, conclusions unchange
Phase conversion in a weakly first-order quark-hadron transition
We investigate the process of phase conversion in a thermally-driven {\it
weakly} first-order quark-hadron transition. This scenario is physically
appealing even if the nature of this transition in equilibrium proves to be a
smooth crossover for vanishing baryonic chemical potential. We construct an
effective potential by combining the equation of state obtained within Lattice
QCD for the partonic sector with that of a gas of resonances in the hadronic
phase, and present numerical results on bubble profiles, nucleation rates and
time evolution, including the effects from reheating on the dynamics for
different expansion scenarios. Our findings confirm the standard picture of a
cosmological first-order transition, in which the process of phase conversion
is entirely dominated by nucleation, also in the case of a weakly first-order
transition. On the other hand, we show that, even for expansion rates much
lower than those expected in high-energy heavy ion collisions, nucleation is
very unlikely, indicating that the main mechanism of phase conversion is
spinodal decomposition. Our results are compared to those obtained for a
strongly first-order transition, as the one provided by the MIT bag model.Comment: 12 pages, 10 figures; v2: 1 reference added, minor modifications,
matches published versio
- …