16 research outputs found

    Stem Cell Therapy: Pieces of the Puzzle

    Get PDF
    Acute ischemic injury and chronic cardiomyopathies can cause irreversible loss of cardiac tissue leading to heart failure. Cellular therapy offers a new paradigm for treatment of heart disease. Stem cell therapies in animal models show that transplantation of various cell preparations improves ventricular function after injury. The first clinical trials in patients produced some encouraging results, despite limited evidence for the long-term survival of transplanted cells. Ongoing research at the bench and the bedside aims to compare sources of donor cells, test methods of cell delivery, improve myocardial homing, bolster cell survival, and promote cardiomyocyte differentiation. This article reviews progress toward these goals

    Aldosterone induces electrical remodeling independent of hypertension

    No full text
    BACKGROUND: Treatment of heart failure patients with aldosterone antagonists has been shown to reduce the occurrence of sudden cardiac death. Therefore we aimed at determining the consequences of chronic exposure to aldosterone and the aldosterone antagonists eplerenone and spironolactone on the electrophysiological properties of the heart in a rat model. METHODS AND RESULTS: Male Wistar rats were chronically treated (4weeks) with aldosterone (ALD) via an osmotic minipump. Spironolactone (SPI) or eplerenone (EPL) was administered with the rat chow. ALD treated animals developed left ventricular hypertrophy, prolonged QT-intervals, a higher rate of ventricular premature beats and non-sustained ventricular tachycardia despite normal blood pressure values. Spironolactone and eplerenone were both able to inhibit the alterations. Left-ventricular mRNA expressions of Kv4.2 and Kv4.3 (Ito), Kv1.5 (IKur), Kir2.1 and Kir2.3 (IK1) and of Cav1.2 (L-type Ca(2+) channel) were significantly down-regulated in ALD. Correspondingly, the protein expressions of subunits Kv1.5, Kir2.3 and Cav1.2 were significantly decreased. A diminished calcineurin activity and mRNA expression of the Ass subunit of calcineurin were found in ALD, which was insensitive to aldosterone antagonists. CONCLUSIONS: Chronic aldosterone-overload induces blood pressure independent structural and electrical remodeling of the myocardium resulting in an increased risk for malignant ventricular arrhythmias

    Delivery of gelfoam-enabled cells and vectors into the pericardial space using a percutaneous approach in a porcine model

    No full text
    Intrapericardial drug delivery is a promising procedure, with the ability to localize therapeutics with the heart. Gelfoam particles are nontoxic, inexpensive, nonimmunogenic and biodegradable compounds that can be used to deliver therapeutic agents. We developed a new percutaneous approach method for intrapericardial injection, puncturing the pericardial sac safely under fluoroscopy and intravascular ultrasound (IVUS) guidance. In a porcine model of myocardial infarction (MI), we deployed gelfoam particles carrying either (a) autologous mesenchymal stem cells (MSCs) or (b) an adenovirus encoding enhanced green fluorescent protein (eGFP) 48 h post-MI. The presence of MSCs and viral infection at the infarct zone was confirmed by immunoflourescence and PCR. Puncture was performed successfully in 16 animals. Using IVUS, we successfully determined the size of the pericardial space before the puncture, and safely accessed that space in setting of pericardial effusion and also adhesions induced by the MI. Intrapericardial injection of gelfoam was safe and reliable. Presence of the MSCs and eGFP expression from adenovirus in the myocardium were confirmed after delivery. Our novel percutaneous approach to deliver (stem-) cells or adenovirus was safe and efficient in this pre-clinical model. IVUS-guided delivery is a minimally invasive procedure that seems to be a promising new strategy to deliver therapeutic agents locally to the heart. Gene Therapy (2011) 18, 979-985; doi:10.1038/gt.2011.52; published online 21 April 201
    corecore