926 research outputs found

    Comparison of analyses of the QTLMAS XIV common dataset. I: genomic selection

    Get PDF
    Background - For the XIV QTLMAS workshop, a dataset for traits with complex genetic architecture has been simulated and released for analyses by participants. One of the tasks was to estimate direct genomic values for individuals without phenotypes. The aim of this paper was to compare results of different approaches used by the participants to calculate direct genomic values for quantitative trait (QT) and binary trait (BT). Results - Participants applied 26 approaches for QT and 15 approaches for BT. Accuracy for QT was between 0.26 and 0.89 for males and between 0.31 and 0.89 for females, and for BT ranged from 0.27 to 0.85. For QT, percentage of lost response to selection varied from 8% to 83%, whereas for BT the loss was between 15% and 71%. Conclusions - Bayesian model averaging methods predicted breeding values slightly better than GBLUP in a simulated data set. The methods utilizing genomic information performed better than traditional pedigree based BLUP analyses. Bivariate analyses was slightly advantageous over single trait for the same method. None of the methods estimated the non-additivity of QTL affecting the QT, which may be one of the constrains in accuracy observed in real data. -------------------------------------------------------------------------------

    Hypoglossal nerve palsy in the course of dissection of the internal carotid arteries – Case reports

    Get PDF
    Internal carotid artery dissection (ICAD) has become an increasingly recognized cause of cerebrovascular accidents in young and middle-aged patients. We report 2 cases of hypoglossal nerve palsy in the course of dissection of the internal carotid arteries. The first patient was admitted to the Department of Neurology due to swallowing difficulty, speech articulation disorders and numbness of the right half of the tongue for 4 weeks. Extracranial vessel ultrasound (US) and transcranial colour Doppler (TCD) visualized thrombus causing occlusion of the right internal carotid artery (RICA). Angio-CT revealed a compression on right XII nerve and a dissection of the RICA. The second patient was referred to the Department of Neurology due to articulation disorders and swallowing difficulties. On admission, neurological examination revealed tongue deviation towards the right side with evidence of atrophy of the right half of the tongue, deviation of the uvula to the right side, absence of palatal and pharyngeal reflexes, rhinolalia and dysphagia. Vessel imaging was taken using angio-MR showing mural thrombus of the RICA. Conclusion The diagnosis of spontaneous non-traumatic dissection of the carotid arteries is a major challenge for clinicians. ICAD must be considered for young and middle-aged patients when severe headache is preceded by the co-existence of focal neurological symptoms. The probability of ICAD increases in the presence of predisposing diseases. The final diagnosis is based on imaging studies: color duplex ultrasound, CT angiography or MR angiography

    Comparison of analyses of the QTLMAS XIV common dataset. II: QTL analysis

    Get PDF
    Background - A quantitative and a binary trait for the 14th QTLMAS 2010 workshop were simulated under a model which combined additive inheritance, epistasis and imprinting. This paper aimed to compare results submitted by the participants of the workshop.Methods - The results were compared according to three criteria: the success rate (ratio of mapped QTL to the total number of simulated QTL), and the error rate (ratio of false positives to the number of reported positions), and mean distance between a true mapped QTL and the nearest submitted position. Results - Seven groups submitted results for the quantitative trait and five for the binary trait. Among the 37 simulated QTL 17 remained undetected. Success rate ranged from 0.05 to 0.43, error rate was between 0.00 and 0.92, and the mean distance ranged from 0.26 to 0.77 Mb. Conclusions - Our comparison shows that differences among methods used by the participants increases with the complexity of genetic architecture. It was particularly visible for the quantitative trait which was determined partly by non-additive QTL. Furthermore, an imprinted QTL with a large effect may remain undetected if the applied model tests only for Mendelian genes

    Study of the B−→Λc+Λˉc−K−B^{-} \to \Lambda_{c}^{+} \bar{\Lambda}_{c}^{-} K^{-} decay

    Full text link
    The decay B−→Λc+Λˉc−K−B^{-} \to \Lambda_{c}^{+} \bar{\Lambda}_{c}^{-} K^{-} is studied in proton-proton collisions at a center-of-mass energy of s=13\sqrt{s}=13 TeV using data corresponding to an integrated luminosity of 5 fb−1\mathrm{fb}^{-1} collected by the LHCb experiment. In the Λc+K−\Lambda_{c}^+ K^{-} system, the Ξc(2930)0\Xi_{c}(2930)^{0} state observed at the BaBar and Belle experiments is resolved into two narrower states, Ξc(2923)0\Xi_{c}(2923)^{0} and Ξc(2939)0\Xi_{c}(2939)^{0}, whose masses and widths are measured to be m(Ξc(2923)0)=2924.5±0.4±1.1 MeV,m(Ξc(2939)0)=2938.5±0.9±2.3 MeV,Γ(Ξc(2923)0)=0004.8±0.9±1.5 MeV,Γ(Ξc(2939)0)=0011.0±1.9±7.5 MeV, m(\Xi_{c}(2923)^{0}) = 2924.5 \pm 0.4 \pm 1.1 \,\mathrm{MeV}, \\ m(\Xi_{c}(2939)^{0}) = 2938.5 \pm 0.9 \pm 2.3 \,\mathrm{MeV}, \\ \Gamma(\Xi_{c}(2923)^{0}) = \phantom{000}4.8 \pm 0.9 \pm 1.5 \,\mathrm{MeV},\\ \Gamma(\Xi_{c}(2939)^{0}) = \phantom{00}11.0 \pm 1.9 \pm 7.5 \,\mathrm{MeV}, where the first uncertainties are statistical and the second systematic. The results are consistent with a previous LHCb measurement using a prompt Λc+K−\Lambda_{c}^{+} K^{-} sample. Evidence of a new Ξc(2880)0\Xi_{c}(2880)^{0} state is found with a local significance of 3.8 σ3.8\,\sigma, whose mass and width are measured to be 2881.8±3.1±8.5 MeV2881.8 \pm 3.1 \pm 8.5\,\mathrm{MeV} and 12.4±5.3±5.8 MeV12.4 \pm 5.3 \pm 5.8 \,\mathrm{MeV}, respectively. In addition, evidence of a new decay mode Ξc(2790)0→Λc+K−\Xi_{c}(2790)^{0} \to \Lambda_{c}^{+} K^{-} is found with a significance of 3.7 σ3.7\,\sigma. The relative branching fraction of B−→Λc+Λˉc−K−B^{-} \to \Lambda_{c}^{+} \bar{\Lambda}_{c}^{-} K^{-} with respect to the B−→D+D−K−B^{-} \to D^{+} D^{-} K^{-} decay is measured to be 2.36±0.11±0.22±0.252.36 \pm 0.11 \pm 0.22 \pm 0.25, where the first uncertainty is statistical, the second systematic and the third originates from the branching fractions of charm hadron decays.Comment: All figures and tables, along with any supplementary material and additional information, are available at https://cern.ch/lhcbproject/Publications/p/LHCb-PAPER-2022-028.html (LHCb public pages

    Les droits disciplinaires des fonctions publiques : « unification », « harmonisation » ou « distanciation ». A propos de la loi du 26 avril 2016 relative à la déontologie et aux droits et obligations des fonctionnaires

    Get PDF
    The production of tt‟ , W+bb‟ and W+cc‟ is studied in the forward region of proton–proton collisions collected at a centre-of-mass energy of 8 TeV by the LHCb experiment, corresponding to an integrated luminosity of 1.98±0.02 fb−1 . The W bosons are reconstructed in the decays W→ℓΜ , where ℓ denotes muon or electron, while the b and c quarks are reconstructed as jets. All measured cross-sections are in agreement with next-to-leading-order Standard Model predictions.The production of tt‟t\overline{t}, W+bb‟W+b\overline{b} and W+cc‟W+c\overline{c} is studied in the forward region of proton-proton collisions collected at a centre-of-mass energy of 8 TeV by the LHCb experiment, corresponding to an integrated luminosity of 1.98 ±\pm 0.02 \mbox{fb}^{-1}. The WW bosons are reconstructed in the decays W→ℓΜW\rightarrow\ell\nu, where ℓ\ell denotes muon or electron, while the bb and cc quarks are reconstructed as jets. All measured cross-sections are in agreement with next-to-leading-order Standard Model predictions

    Measurement of the ratios of branching fractions R(D∗)\mathcal{R}(D^{*}) and R(D0)\mathcal{R}(D^{0})

    Full text link
    The ratios of branching fractions R(D∗)≡B(Bˉ→D∗τ−Μˉτ)/B(Bˉ→D∗Ό−ΜˉΌ)\mathcal{R}(D^{*})\equiv\mathcal{B}(\bar{B}\to D^{*}\tau^{-}\bar{\nu}_{\tau})/\mathcal{B}(\bar{B}\to D^{*}\mu^{-}\bar{\nu}_{\mu}) and R(D0)≡B(B−→D0τ−Μˉτ)/B(B−→D0Ό−ΜˉΌ)\mathcal{R}(D^{0})\equiv\mathcal{B}(B^{-}\to D^{0}\tau^{-}\bar{\nu}_{\tau})/\mathcal{B}(B^{-}\to D^{0}\mu^{-}\bar{\nu}_{\mu}) are measured, assuming isospin symmetry, using a sample of proton-proton collision data corresponding to 3.0 fb−1{ }^{-1} of integrated luminosity recorded by the LHCb experiment during 2011 and 2012. The tau lepton is identified in the decay mode τ−→Ό−ΜτΜˉΌ\tau^{-}\to\mu^{-}\nu_{\tau}\bar{\nu}_{\mu}. The measured values are R(D∗)=0.281±0.018±0.024\mathcal{R}(D^{*})=0.281\pm0.018\pm0.024 and R(D0)=0.441±0.060±0.066\mathcal{R}(D^{0})=0.441\pm0.060\pm0.066, where the first uncertainty is statistical and the second is systematic. The correlation between these measurements is ρ=−0.43\rho=-0.43. Results are consistent with the current average of these quantities and are at a combined 1.9 standard deviations from the predictions based on lepton flavor universality in the Standard Model.Comment: All figures and tables, along with any supplementary material and additional information, are available at https://cern.ch/lhcbproject/Publications/p/LHCb-PAPER-2022-039.html (LHCb public pages
    • 

    corecore