73 research outputs found

    Proper motions of Local Group dwarf spheroidal galaxies I: First ground-based results for Fornax

    Full text link
    In this paper we present in detail the methodology and the first results of a ground-based program to determine the absolute proper motion of the Fornax dwarf spheroidal galaxy. The proper motion was determined using bona-fide Fornax star members measured with respect to a fiducial at-rest background spectroscopically confirmed Quasar, \qso. Our homogeneous measurements, based on this one Quasar gives a value of (\mua,\mud)=(0.64±0.08,0.01±0.11) = (0.64 \pm 0.08, -0.01 \pm 0.11) \masy. There are only two other (astrometric) determinations for the transverse motion of Fornax: one based on a combination of plates and HST data, and another (of higher internal precision) based on HST data. We show that our proper motion errors are similar to those derived from HST measurements on individual QSOs. We provide evidence that, as far as we can determine it, our motion is not affected by magnitude, color, or other potential systematic effects. Last epoch measurements and reductions are underway for other four Quasar fields of this galaxy, which, when combined, should yield proper motions with a weighted mean error of 50μ\sim50\,\muas y1^{-1}, allowing us to place important constraints on the orbit of Fornax.Comment: Accepted for publication in Publications of the Astronomical Society of the Pacific, PASP. To appear in July issue. 64 pages, 18 figure

    A search for transiting extrasolar planets with the LAIWO instrument

    Get PDF
    In this thesis we study the necessary methods to perform a transit search for extrasolar planets. We apply these methods to search for planets in one of the fields of the LAIWO project: the Cygnus-Lyra field (Laiwo VI). We describe the problems that systematic effects can introduce for precise relative photometry at the millimagnitude level (~3mmag). Ways to minimize and quantify this correlated noise are also described. We test the weaknesses and strenghts of two transit detection algorithms (TDA) namely the Box fitting algorithm (BLS) and the TRUFAS algorithm using archive data from the OGLE project and simulations of the first year of the Pan-Planets survey. These projects are similar in terms of telescope size and field of view to the LAIWO survey. We have found that the main limitations of the BLS algorithm are the transit depth and correlated noise (Red Noise). The TRUFAS detection efficiency correlates with the number of points in transit and the number of transits present in the light curve, and, its detection efficiency is low (less than ~ 50%) for these type of ground-based observations. Finally, we create from the LAIWO data light curves which are suitable to detect planets among the stars brighter than R = 16.5 mag. We have found 31 eclipsing binaries and 18 light curves that have transits consistent with a planet. Of these detections, 3 eclipsing binaries and 8 planet candidates were independently found by the KEPLER survey. Of the 10 newly discovered transiting planets, 3 are promising to justify follow-up confirmation studies, which are always necessary to probe the planetary nature of a transiting companion

    The proper motion of the Magellanic Clouds, I: first results and description of the program

    Get PDF
    We present the first results of a ground-based program to determine the proper motion of the Magellanic Clouds (MCs) relative to background quasars (QSO), being carried out using the Iréneé du Pont 2.5 m telescope at Las Campanas Observatory, Chile. Eleven QSO fields have been targeted in the Small Magellanic Cloud (SMC) over a time base of six years, and with seven epochs of observation. One quasar field was targeted in the Large Magellanic Cloud (LMC), over a time base of five years, and with six epochs of observation. The shorter time base in the case of the LMC is compensated by the much larger amount of high-quality astrometry frames that could be secured for the LMC quasar field (124 frames), compared to the SMC fields (an average of roughly 45 frames). In this paper, we present final results for field Q0557-6713 in the LMC and field Q0036-7227 in the SMC. From field Q0557-6713, we have obtained a measured proper motion of μαcos δ = +1.95 ± 0.13 mas yr-1, μδ = +0.43 ± 0.18 mas yr-1 for the LMC. From field Q0036-7227, we have obtained a measured proper motion of μα cosδ = +0.95 ± 0.29 mas yr-1, μδ = -1.14 ± 0.18 mas yr-1 for the SMC. Although we went through the full procedure for another SMC field (QJ0036-7225), on account of unsolvable astrometric difficulties caused by blending of the QSO image, it was impossible to derive a reliable proper motion. Current model rotation curves for the plane of the LMC indicate that the rotational velocity (V rot) at the position of LMC field Q0557-6713 can be as low as 50 km s-1, or as high as 120 km s-1. A correction for perspective and rotation effects leads to a center of mass proper motion for the LMC of μα cosδ = +1.82 ± 0.13 mas yr-1, μδ = +0.39 ± 0.15 mas yr-1 (V rot = 50 km s-1), and to μα cosδ = +1.61 ± 0.13 mas yr-1, μδ = +0.60 ± 0.15 mas yr-1 (V rot = 120 km s-1). Assuming that the SMC has a disk-like central structure, but that it does not rotate, we obtain a center of mass proper motion for the SMC of μα cosδ = +1.03 ± 0.29 mas yr-1, μδ = -1.09 ± 0.18 mas yr-1. Our results are in reasonable agreement with most previous determinations of the proper motion of the MCs, including recent Hubble Space Telescope measurements. Complemented with published values of the radial velocity of the centers of the LMC and SMC, we have used our proper motions to derive the galactocentric (gc) velocity components of the MCs. For the LMC, we obtain V gc,t = +315 ± 20 km s-1, V gc,r = +86 ± 17 km s-1 (V rot = 50 km s-1), and V gc,t = +280 ± 24 km s-1, V gc,r = +94 ± 17 km s-1 (V rot = 120 km s-1). For the SMC, we obtain V gc,t = +258 ± 50 km s-1, V gc,r = +20 ± 44 km s-1. These velocities imply a relative velocity between the LMC and SMC of 84 ± 50 km s-1, for V rot,LMC = 50 km s-1, and 62 ± 63 km s-1 for V rot,LMC = 120 km s-1. Albeit our large errors, these values are not inconsistent with the standard assumption that the MCs are gravitationally bound to each other.Fil: Costa, Edgardo. Universidad de Chile; ChileFil: Méndez, René A.. Universidad de Chile; ChileFil: Pedreros, Mario H.. Universidad de Tarapaca; ChileFil: Moyano, Maximiliano. Universidad de Chile; ChileFil: Gallart, Carme. Instituto de Astrofísica de Canarias; EspañaFil: Noël, Noelia. Instituto de Astrofísica de Canarias; EspañaFil: Baume, Gustavo Luis. Universidad Nacional de La Plata. Facultad de Ciencias Astronómicas y Geofísicas; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - La Plata. Instituto de Astrofísica La Plata. Universidad Nacional de La Plata. Facultad de Ciencias Astronómicas y Geofísicas. Instituto de Astrofísica La Plata; ArgentinaFil: Carraro, Giovanni. European Southern Observatory; Chil

    The proper motion of the Magellanic clouds. I. First results and description of the program

    Get PDF
    We present the first results of a ground-based program to determine the proper motion of the Magellanic Clouds (MCs) relative to background quasars (QSO), being carried out using the Iréneé du Pont 2.5 m telescope at Las Campanas Observatory, Chile. Eleven QSO fields have been targeted in the Small Magellanic Cloud (SMC) over a time base of six years, and with seven epochs of observation. One quasar field was targeted in the Large Magellanic Cloud (LMC), over a time base of five years, and with six epochs of observation. The shorter time base in the case of the LMC is compensated by the much larger amount of high-quality astrometry frames that could be secured for the LMC quasar field (124 frames), compared to the SMC fields (an average of roughly 45 frames). In this paper, we present final results for field Q0557-6713 in the LMC and field Q0036-7227 in the SMC. From field Q0557-6713, we have obtained a measured proper motion of μαcos δ = +1.95 ± 0.13 mas yr-1, μδ = +0.43 ± 0.18 mas yr-1 for the LMC. From field Q0036-7227, we have obtained a measured proper motion of μα cosδ = +0.95 ± 0.29 mas yr-1, μδ = -1.14 ± 0.18 mas yr -1 for the SMC. Although we went through the full procedure for another SMC field (QJ0036-7225), on account of unsolvable astrometric difficulties caused by blending of the QSO image, it was impossible to derive a reliable proper motion. Current model rotation curves for the plane of the LMC indicate that the rotational velocity (Vrot) at the position of LMC field Q0557-6713 can be as low as 50 km s-1, or as high as 120 km s-1. A correction for perspective and rotation effects leads to a center of mass proper motion for the LMC of μα cosδ = +1.82 ± 0.13 mas yr-1, μδ = +0.39 ± 0.15 mas yr-1 (Vrot = 50 km s-1), and to μα cosδ = +1.61 ± 0.13 mas yr-1, μδ = +0.60 ± 0.15 mas yr-1 (V rot = 120 km s-1). Assuming that the SMC has a disk-like central structure, but that it does not rotate, we obtain a center of mass proper motion for the SMC of μα cosδ = +1.03 ± 0.29 mas yr-1, μδ = -1.09 ± 0.18 mas yr-1. Our results are in reasonable agreement with most previous determinations of the proper motion of the MCs, including recent Hubble Space Telescope measurements. Complemented with published values of the radial velocity of the centers of the LMC and SMC, we have used our proper motions to derive the galactocentric (gc) velocity components of the MCs. For the LMC, we obtain Vgc,t = +315 ± 20 km s-1, Vgc,r = +86 ± 17 km s-1 (Vrot = 50 km s-1), and Vgc,t = +280 ± 24 km s-1, Vgc,r = +94 ± 17 km s-1 (Vrot = 120 km s-1). For the SMC, we obtain Vgc,t = +258 ± 50 km s-1, V gc,r = +20 ± 44 km s-1. These velocities imply a relative velocity between the LMC and SMC of 84 ± 50 km s-1, for Vrot,LMC = 50 km s-1, and 62 ± 63 km s -1 for Vrot,LMC = 120 km s-1. Albeit our large errors, these values are not inconsistent with the standard assumption that the MCs are gravitationally bound to each other.Facultad de Ciencias Astronómicas y Geofísica

    The proper motion of the Magellanic clouds. I. First results and description of the program

    Get PDF
    We present the first results of a ground-based program to determine the proper motion of the Magellanic Clouds (MCs) relative to background quasars (QSO), being carried out using the Iréneé du Pont 2.5 m telescope at Las Campanas Observatory, Chile. Eleven QSO fields have been targeted in the Small Magellanic Cloud (SMC) over a time base of six years, and with seven epochs of observation. One quasar field was targeted in the Large Magellanic Cloud (LMC), over a time base of five years, and with six epochs of observation. The shorter time base in the case of the LMC is compensated by the much larger amount of high-quality astrometry frames that could be secured for the LMC quasar field (124 frames), compared to the SMC fields (an average of roughly 45 frames). In this paper, we present final results for field Q0557-6713 in the LMC and field Q0036-7227 in the SMC. From field Q0557-6713, we have obtained a measured proper motion of μαcos δ = +1.95 ± 0.13 mas yr-1, μδ = +0.43 ± 0.18 mas yr-1 for the LMC. From field Q0036-7227, we have obtained a measured proper motion of μα cosδ = +0.95 ± 0.29 mas yr-1, μδ = -1.14 ± 0.18 mas yr -1 for the SMC. Although we went through the full procedure for another SMC field (QJ0036-7225), on account of unsolvable astrometric difficulties caused by blending of the QSO image, it was impossible to derive a reliable proper motion. Current model rotation curves for the plane of the LMC indicate that the rotational velocity (Vrot) at the position of LMC field Q0557-6713 can be as low as 50 km s-1, or as high as 120 km s-1. A correction for perspective and rotation effects leads to a center of mass proper motion for the LMC of μα cosδ = +1.82 ± 0.13 mas yr-1, μδ = +0.39 ± 0.15 mas yr-1 (Vrot = 50 km s-1), and to μα cosδ = +1.61 ± 0.13 mas yr-1, μδ = +0.60 ± 0.15 mas yr-1 (V rot = 120 km s-1). Assuming that the SMC has a disk-like central structure, but that it does not rotate, we obtain a center of mass proper motion for the SMC of μα cosδ = +1.03 ± 0.29 mas yr-1, μδ = -1.09 ± 0.18 mas yr-1. Our results are in reasonable agreement with most previous determinations of the proper motion of the MCs, including recent Hubble Space Telescope measurements. Complemented with published values of the radial velocity of the centers of the LMC and SMC, we have used our proper motions to derive the galactocentric (gc) velocity components of the MCs. For the LMC, we obtain Vgc,t = +315 ± 20 km s-1, Vgc,r = +86 ± 17 km s-1 (Vrot = 50 km s-1), and Vgc,t = +280 ± 24 km s-1, Vgc,r = +94 ± 17 km s-1 (Vrot = 120 km s-1). For the SMC, we obtain Vgc,t = +258 ± 50 km s-1, V gc,r = +20 ± 44 km s-1. These velocities imply a relative velocity between the LMC and SMC of 84 ± 50 km s-1, for Vrot,LMC = 50 km s-1, and 62 ± 63 km s -1 for Vrot,LMC = 120 km s-1. Albeit our large errors, these values are not inconsistent with the standard assumption that the MCs are gravitationally bound to each other.Facultad de Ciencias Astronómicas y Geofísica

    First ground-based CCD proper motions for Fornax II: Final results

    Full text link
    We present the first entirely ground-based astrometric determination of the proper motion for the Fornax Local Group Dwarf Spheroidal satellite galaxy of the Milky Way, using CCD data acquired with the ESO 3.5 m NTT telescope at La Silla Observatory in Chile. Our unweighted mean from five Quasar fields in the background of Fornax, used as fiducial reference points, leads to μαcosδ=0.62±0.16\mu_\alpha \cos \delta=0.62 \pm 0.16 \masy, and μδ=0.53±0.15\mu_\delta=-0.53 \pm 0.15 \masy. A detailed comparison with all previous measurements of this quantity seems to imply that there is still no convincing convergence to a single value, perhaps indicating the existence of unnacounted systematic effects in (some of) these measurements. From all available proper motion and radial velocity measurements for Fornax, we compute Fornax's orbital parameters and their uncertainty using a realistic Galactic potential and a Monte Carlo simulation. Properties of the derived orbits are then compared to main star formation episodes in the history of Fornax. All published proper motion values imply that Fornax has recently (200-300 Myr ago) approached perigalacticon at a distance of \sim150 kpc. However, the derived period exhibits a large scatter, as does the apogalacticon. Our orbit, being the most energetic, implies a very large apogalactic distance of 950\sim 950 kpc. If this were the case, then Fornax would be a representative of an hypervelocity MW satellite in late infall.Comment: Accepted by AJ. 25 pages, 9 figures, 9 tables. Interesting conclusions...Enjoy

    NGTS clusters survey -- II. White-light flares from the youngest stars in Orion

    Get PDF
    We present the detection of high energy white-light flares from pre-main sequence stars associated with the Orion complex, observed as part of the Next Generation Transit Survey (NGTS). With energies up to 5.2×10355.2\times10^{35} erg these flares are some of the most energetic white-light flare events seen to date. We have used the NGTS observations of flaring and non-flaring stars to measure the average flare occurrence rate for 4 Myr M0-M3 stars. We have also combined our results with those from previous studies to predict average rates for flares above 1×10351\times10^{35} ergs for early M stars in nearby young associations.STFC ST/M001962/1; ST/P000495/

    TESS Duotransit Candidates from the Southern Ecliptic Hemisphere

    Full text link
    Discovering transiting exoplanets with long orbital periods allows us to study warm and cool planetary systems with temperatures similar to the planets in our own Solar system. The TESS mission has photometrically surveyed the entire Southern Ecliptic Hemisphere in Cycle 1 (August 2018 - July 2019), Cycle 3 (July 2020 - June 2021) and Cycle 5 (September 2022 - September 2023). We use the observations from Cycle 1 and Cycle 3 to search for exoplanet systems that show a single transit event in each year - which we call duotransits. The periods of these planet candidates are typically in excess of 20 days, with the lower limit determined by the duration of individual TESS observations. We find 85 duotransit candidates, which span a range of host star brightnesses between 8 < TmagT_{mag} < 14, transit depths between 0.1 per cent and 1.8 per cent, and transit durations between 2 and 10 hours with the upper limit determined by our normalisation function. Of these candidates, 25 are already known, and 60 are new. We present these candidates along with the status of photometric and spectroscopic follow-up.Comment: 25 pages, 16 figures, submitted to Monthly Notices of the Royal Astronomical Societ

    NGTS-21b: An Inflated Super-Jupiter Orbiting a Metal-poor K dwarf

    Get PDF
    We report the discovery of NGTS-21b, a massive hot Jupiter orbiting a low-mass star as part of the Next Generation Transit Survey (NGTS). The planet has a mass and radius of 2.36±0.212.36 \pm 0.21 MJ_{\rm J}, and 1.33±0.031.33 \pm 0.03 RJ_{\rm J}, and an orbital period of 1.543 days. The host is a K3V (Teff=4660±41T_{\rm eff}=4660 \pm 41, K) metal-poor ([Fe/H]=0.26±0.07{\rm [Fe/H]}=-0.26 \pm 0.07, dex) dwarf star with a mass and radius of 0.72±0.040.72 \pm 0.04, M_{\odot},and 0.86±0.040.86 \pm 0.04, R_{\odot}. Its age and rotation period of 10.027.30+3.2910.02^{+3.29}_{-7.30}, Gyr and 17.88±0.0817.88 \pm 0.08, d respectively, are in accordance with the observed moderately low stellar activity level. When comparing NGTS-21b with currently known transiting hot Jupiters with similar equilibrium temperatures, it is found to have one of the largest measured radii despite its large mass. Inflation-free planetary structure models suggest the planet's atmosphere is inflated by 21%\sim21\%, while inflationary models predict a radius consistent with observations, thus pointing to stellar irradiation as the probable origin of NGTS-21b's radius inflation. Additionally, NGTS-21b's bulk density (1.25±0.151.25 \pm 0.15, g/cm3^3) is also amongst the largest within the population of metal-poor giant hosts ([Fe/H] < 0.0), helping to reveal a falling upper boundary in metallicity-planet density parameter space that is in concordance with core accretion formation models. The discovery of rare planetary systems such as NGTS-21 greatly contributes towards better constraints being placed on the formation and evolution mechanisms of massive planets orbiting low-mass stars.Comment: 12 pages, 13 figures, accepted for publication in MNRA
    corecore