793 research outputs found
The X-ray emission of magnetic cataclysmic variables in the XMM-Newton era
We review the X-ray spectral properties of magnetic cataclysmic binaries
derived from observations obtained during the last decade with the large X-ray
observatories XMM-Newton, Chandra and Suzaku. We focus on the signatures of the
different accretion modes which are predicted according to the values of the
main physical parameters (magnetic field, local accretion rate and white dwarf
mass). The observed large diversity of spectral behaviors indicates a wide
range of parameter values in both intermediate polars and polars, in line with
a possible evolutionary link between both classes.Comment: To appear in the Proceedings of "The Golden Age of Cataclysmic
Variables (Palermo 2011)", in Mem. Soc. Astron. It. (7 pages, 3 figures
X-ray Variability of AGN and the Flare Model
Short-term variability of X-ray continuum spectra has been reported for
several Active Galactic Nuclei. Significant X-ray flux variations are observed
within time scales down to 10^3-10^5 seconds. We discuss short variability time
scales in the frame of the X-ray flare model, which assumes the release of a
large hard X-ray flux above a small portion of the accretion disk. The
resulting observed X-ray spectrum is composed of the primary radiation and of a
reprocessed Compton reflection component that we model with numerical radiative
transfer simulations. The incident hard X-rays of the flare will heat up the
atmosphere of the accretion disk and hence induce thermal expansion.
Eventually, the flare source will be surrounded by an optically thick medium,
which should modify the observed spectra.Comment: 4 pages, 3 figures, accepted proceedings for a talk at the conference
"AGN variability from the X-rays to the radio", June 2004, Crimean
Observator
Modeling the X-ray fractional variability spectrum of Active Galactic Nuclei using multiple flares
Using Monte-Carlo simulations of X-ray flare distributions across the
accretion disk of active galactic nuclei (AGN), we obtain modeling results for
the energy-dependent fractional variability amplitude. Referring to previous
results of this model, we illustrate the relation between the shape of the
point-to-point fractional variability spectrum, F_pp, and the time-integrated
spectral energy distribution, F_E. The results confirm that the spectral shape
and variability of the iron Kalpha line are dominated by the flares closest to
the disk center.Comment: 2 pages, 1 figure, conference proceedings of the AGN meeting held in
October 2006 in Xi'an, China. To appear in "The Central Engine of Active
Galactic Nuclei", ed. L. C. Ho and J.-M. Wang (San Francisco: ASP
Constraining global parameters of accreting black holes by modeling magnetic flares
We present modeling results for the reprocessed radiation expected from
magnetic flares above AGN accretion disks. Relativistic corrections for the
orbital motion of the flare and for the curved space-time in the vicinity of
the black hole are taken into account. We investigate the local emission
spectra, as seen in a frame co-orbiting with the disk, and the observed spectra
at infinity. We investigate long-term flares at different orbital phases and
short-term flares for various global parameters of the accreting black hole.
Particular emphasis is put on the relation between the iron Kalpha line and the
Compton hump as these two features can be simultaneously observed by the Suzaku
satellite and later by Simbol-X.Comment: 4 pages, 1 figure, 1 table, proceedings for a poster at the
international conference "The Extreme Universe in the Suzaku Era" held in
Kyoto, Japan, December 4-8, 200
Iron lines from transient and persisting hot spots on AGN accretion disks
[abridged] We model the X-ray reprocessing from a strong co-rotating flare
above an accretion disk in active galactic nuclei. We explore the horizontal
structure and evolution of the underlying hot spot. To obtain the spectral
evolution seen by a distant observer, we apply a general relativity ray-tracing
technique. We concentrate on the energy band around the iron K-line, where the
relativistic effects are most pronounced. Persistent flares lasting for a
significant fraction of the orbital time scale and short, transient flares are
considered. In our time-resolved analysis, the spectra recorded by a distant
observer depend on the position of the flare/spot with respect to the central
black hole. If the flare duration significantly exceeds the light travel time
across the spot, then the spot horizontal stratification is unimportant. On the
other hand, if the flare duration is comparable to the light travel time across
the spot radius, the lightcurves exhibit a typical asymmetry in their time
profiles. The sequence of dynamical spectra proceeds from more strongly to less
strongly ionized re-emission. At all locations within the spot the spectral
intensity increases towards edge-on emission angles, revealing the limb
brightening effect. Future X-ray observatories with significantly larger
effective collecting areas will enable to spectroscopically map out the
azimuthal irradiation structure of the accretion disk and to localize
persistent flares. If the hot spot is not located too close to the marginally
stable orbit of the black hole, it will be possible to probe the reflecting
medium via the sub-structure of the iron K-line. Indications for transient
flares will only be obtained from analyzing the observed lightcurves on the
gravitational time scale of the accreting supermassive black hole.Comment: 15 pages, 8 figures, accepted by Astronomy & Astrophysic
High prevalence of giardiasis in an urban population in Niger
Un échantillon de 2569 personnes (1190 hommes et 1379 femmes) provenant de la ville de Niamey (329.000 habitants), capitale du Niger, s'est révélé atteint de giardiase avec une prévalence de 28,5 %. Cette prévalence est identique chez les hommes et les femmes et atteint surtout le groupe d'âge des 3 à 29 an
The puzzle of the soft X-ray excess in AGN: absorption or reflection?
The 2-10 keV continuum of AGN is generally well represented by a single power
law. However, at smaller energies the continuum displays an excess with respect
to the extrapolation of this power law, called the ''soft X-ray excess''. Until
now this soft X-ray excess was attributed, either to reflection of the hard
X-ray source by the accretion disk, or to the presence of an additional
comptonizing medium, giving a steep spectrum. An alternative solution proposed
by Gierlinski and Done (2004) is that a single power law well represents both
the soft and the hard X-ray emission and the impression of the soft X-ray
excess is due to absorption of a primary power law by a relativistic wind. We
examine the advantages and drawbacks of reflection versus absorption models,
and we conclude that the observed spectra can be well modeled, either by
absorption (for a strong excess), or by reflection (for a weak excess). However
the physical conditions required by the absorption models do not seem very
realistic: we would prefer an ''hybrid model''.Comment: 4 pages, 3 figures, abstracts SF2A-2005, published by EDP-Sciences
Conference Serie
- …