24 research outputs found
Interaction between Mu and Delta Opioid Receptor Agonists in an Assay of Capsaicin-Induced Thermal Allodynia in Rhesus Monkeys
Delta opioid agonists enhance antinociceptive effects of mu-opioid agonists in many preclinical assays of acute nociception, but delta/mu interactions in preclinical models of inflammation-associated pain have not been examined. This study examined interactions between the delta agonist SNC80 [(+)-4-[(αR)-α-((2S,5R)-4-allyl-2,5-dimethyl-1-piperazinyl)-3-methoxybenzyl]-N,N-diethylbenzamide] and the mu agonist analgesics methadone, morphine, and nalbuphine in an assay of capsaicin-induced thermal allodynia in rhesus monkeys. Thermal allodynia was produced by topical application of capsaicin to the tail. Antiallodynic effects of methadone, morphine, and nalbuphine were evaluated alone or in combination with fixed proportions of SNC80 identical to proportions previously shown to enhance acute thermal antinociceptive effects of these mu agonists in rhesus monkeys (0.9 : 1 SNC80/methadone; 0.29 : 1 SNC80/morphine; 3.6 : 1 SNC80/nalbuphine). Methadone, morphine, and nalbuphine each produced dose-dependent antiallodynia. SNC80 produced partial antiallodynia up to the highest dose tested (5.6 mg/kg). SNC80 produced a modest, enantioselective, and naltrindole-reversible enhancement of methadone-induced antiallodynia. However, SNC80 did not enhance morphine antiallodynia and only weakly enhanced nalbuphine antiallodynia. Overall, SNC80 produced modest or no enhancement of the antiallodynic effects of the three mu agonists evaluated. These results suggest that delta agonist-induced enhancement of mu agonist antiallodynia may be weaker and less reliable than previously demonstrated enhancement of mu agonist acute thermal nociception
Estimating taxon-specific population dynamics in diverse microbial communities
Understanding how population-level dynamics contribute to ecosystem-level processes is a primary focus of ecological research and has led to important breakthroughs in the ecology of macroscopic organisms. However, the inability to measure population-specific rates, such as growth, for microbial taxa within natural assemblages has limited ecologists’ understanding of how microbial populations interact to regulate ecosystem processes. Here, we use isotope incorporation within DNA molecules to model taxon- specific population growth in the presence of 18O-labeled water. By applying this model to phylogenetic marker sequencing data collected from stable-isotope probing studies, we estimate rates of growth, mortal- ity, and turnover for individual microbial populations within soil assemblages. When summed across the entire bacterial community, our taxon-specific estimates are within the range of other whole-assemblage measurements of bacterial turnover. Because it can be applied to environmental samples, the approach we present is broadly applicable to measuring population growth, mortality, and associated biogeochemical process rates of microbial taxa for a wide range of ecosystems and can help reveal how individual microbial populations drive biogeochemical fluxes
Phylogenetic organization of bacterial activity.
Phylogeny is an ecologically meaningful way to classify plants and animals, as closely related taxa frequently have similar ecological characteristics, functional traits and effects on ecosystem processes. For bacteria, however, phylogeny has been argued to be an unreliable indicator of an organism\u27s ecology owing to evolutionary processes more common to microbes such as gene loss and lateral gene transfer, as well as convergent evolution. Here we use advanced stable isotope probing with (13)C and (18)O to show that evolutionary history has ecological significance for in situ bacterial activity. Phylogenetic organization in the activity of bacteria sets the stage for characterizing the functional attributes of bacterial taxonomic groups. Connecting identity with function in this way will allow scientists to begin building a mechanistic understanding of how bacterial community composition regulates critical ecosystem functions.The ISME Journal advance online publication, 4 March 2016; doi:10.1038/ismej.2016.28
Evolutionary history influences the salinity preference of bacterial taxa in wetland soils
Salinity is a major driver of bacterial community composition across the globe. Despite growing recognition that different bacterial species are present or active at different salinities, the mechanisms by which salinity structures community composition remain unclear. We tested the hypothesis that these patterns reflect ecological coherence in the salinity preferences of phylogenetic groups using a reciprocal transplant experiment of fresh- and saltwater wetlands soils. The salinity of both the origin and host environments affected community composition (16S rRNA gene sequences) and activity (e.g., extracellular enzyme activity, CO2, and CH4 production). These changes in community composition and activity rates were strongly correlated, which suggests the effect of environment on function could be mediated, at least in part, by microbial community composition. Based on their distribution across treatments, each phylotype was categorized as having a salinity preference (freshwater, saltwater, or none) and phylogenetic analyses revealed a significant influence of evolutionary history on these groupings. This finding was corroborated by examining the salinity preferences of high-level taxonomic groups. For instance, we found that the majority of alpha- and gamma-proteobacteria preferred saltwater, while many beta-proteobacteria prefer freshwater. Overall, our results indicate the effect of salinity on bacterial community composition results from phylogenetically-clustered salinity preferences
Bridging Ecology and Agronomy to Foster Diverse Pastures and Healthy Soils
Renovating pastures to increase forage species diversity is a burgeoning practice among producers. Over a century of grassland and small-plot research suggests that increasing plant diversity can lead to improved pasture productivity, resilience, and soil health. However, it remains hard to decipher how these benefits translate to grazed production systems given the limited experimentation in realistic grazing systems. There is a disconnect between ecological and agronomic research regarding what qualifies as a “diverse” grassland or pasture. This review aims to examine the current state of research regarding plant diversity and its potential benefits for soil health in pasture systems, and outlines how we can improve our understanding and implementation of this practice in production systems
Bridging Ecology and Agronomy to Foster Diverse Pastures and Healthy Soils
Renovating pastures to increase forage species diversity is a burgeoning practice among producers. Over a century of grassland and small-plot research suggests that increasing plant diversity can lead to improved pasture productivity, resilience, and soil health. However, it remains hard to decipher how these benefits translate to grazed production systems given the limited experimentation in realistic grazing systems. There is a disconnect between ecological and agronomic research regarding what qualifies as a “diverse” grassland or pasture. This review aims to examine the current state of research regarding plant diversity and its potential benefits for soil health in pasture systems, and outlines how we can improve our understanding and implementation of this practice in production systems
Vegetation Effects on Bacteria and Denitrifier Abundance in the Soils of Two Tidal Freshwater Wetlands in Virginia
This study examined the abundance of bacteria and nirS-type denitrifiers associated with the rhizospheres of three emergent macrophyte species (Juncus effusus, Typha latifolia, and Peltandra virginica) to gain a greater understanding of plant-microbe interactions in wetland soils. Sampling of plant and soil properties was performed during the growing season (June) and following plant senescence (November) at two tidal freshwater wetlands. Quantitative polymerase chain reaction was used to determine the abundance of bacteria (16S rRNA) and nirS-type denitrifier genes from the rhizosphere and rhizoplane of each plant species and from nearby unvegetated soils. For bacteria, there was a positive rhizosphere effect that did not differ significantly across plant species. In contrast, significant differences in the abundance of nirS-type denitrifiers were observed across the plant species. Rhizosphere abundance was ∼2-fold greater in Peltandra virginica and 4-fold greater in Typha latifolia compared to Juncus effusus. For both bacteria and nirS-type denitrifiers, plant effects were greater during the growing season, and abundance was highly correlated with soil pH, moisture, and organic matter content. Overall, these results demonstrate plant effects on the rhizosphere microbial community can be species‐specific and that there is a synergistic relationship between plant species and environmental conditions