540 research outputs found
System for Controlling a Magnetically Levitated Rotor
In a rotor assembly having a rotor supported for rotation by magnetic bearings, a processor controlled by software or firmware controls the generation of force vectors that position the rotor relative to its bearings in a "bounce" mode in which the rotor axis is displaced from the principal axis defined between the bearings and a "tilt" mode in which the rotor axis is tilted or inclined relative to the principal axis. Waveform driven perturbations are introduced to generate force vectors that excite the rotor in either the "bounce" or "tilt" modes
Bearingless switched reluctance motor
A switched reluctance motor has a stator with a first set of poles directed toward levitating a rotor horizontally within the stator. A disc shaped portion of a hybrid rotor is affected by the change in flux relative to the current provided at these levitation poles. A processor senses the position of the rotor and changes the flux to move the rotor toward center of the stator. A second set of poles of the stator are utilized to impart torque upon a second portion of the rotor. These second set of poles are driven in a traditional switched reluctance manner by the processor
Improved Bearingless Switched-Reluctance Motor
The Morrison rotor, named after its inventor, is a hybrid rotor for use in a bearingless switched-reluctance electric motor. The motor is characterized as bearingless in the sense that it does not rely on conventional mechanical bearings: instead, it functions as both a magnetic bearing and a motor. Bearingless switched-reluctance motors are attractive for use in situations in which large variations in temperatures and/or other extreme conditions preclude the use of conventional electric motors and mechanical bearings. In the Morrison motor, as in a prior bearingless switched-reluctance motor, a multipole rotor is simultaneously levitated and rotated. In the prior motor, simultaneous levitation and rotation are achieved by means of two kinds of stator windings: (1) main motor windings and (2) windings that exert levitating forces on a multipole rotor. The multipole geometry is suboptimum for levitation in that it presents a discontinuous surface to the stator pole faces, thereby degrading the vibration-suppression capability of the magnetic bearing. The Morrison rotor simplifies the stator design in that the stator contains only one type of winding. The rotor is a hybrid that includes both (1) a circular lamination stack for levitation and (2) a multipole lamination stack for rotation. A prototype includes six rotor poles and eight stator poles (see figure). During normal operation, two of the four pairs of opposing stator poles (each pair at right angles to the other pair) levitate the rotor. The remaining two pairs of stator poles exert torque on the six-pole rotor lamination stack to produce rotation. The relative lengths of the circular and multipole lamination stacks on the rotor can be chosen to tailor the performance of the motor for a specific application. For a given overall length, increasing the length of the multipole stack relative to the circular stack results in an increase in torque relative to levitation load capacity and stiffness, and vice versa
Control Code for Bearingless Switched-Reluctance Motor
A computer program has been devised for controlling a machine that is an integral combination of magnetic bearings and a switched-reluctance motor. The motor contains an eight-pole stator and a hybrid rotor, which has both (1) a circular lamination stack for levitation and (2) a six-pole lamination stack for rotation. The program computes drive and levitation currents for the stator windings with real-time feedback control. During normal operation, two of the four pairs of opposing stator poles (each pair at right angles to the other pair) levitate the rotor. The remaining two pairs of stator poles exert torque on the six-pole rotor lamination stack to produce rotation. This version is executable in a control-loop time of 40 s on a Pentium (or equivalent) processor that operates at a clock speed of 400 MHz. The program can be expanded, by addition of logic blocks, to enable control of position along additional axes. The code enables adjustment of operational parameters (e.g., motor speed and stiffness, and damping parameters of magnetic bearings) through computer keyboard key presses
Dynamic Spin Rig Upgraded With a Five- Axis-Controlled Three-Magnetic-Bearing Support System With Forward Excitation
The NASA Glenn Research Center Dynamic Spin Rig is used for experimental evaluation of vibration analysis methods and dynamic characteristics for rotating systems. Measurements are made while rotors are spun and vibrated in a vacuum chamber. The rig has been upgraded with a new active magnetic bearing rotor support and excitation system. This design is expected to provide operational improvements over the existing rig. The rig will be able to be operated in either the old or new configuration. In the old configuration, two ball bearings support the vertical shaft of the rig, with the test article located between the bearings. Because the bearings operate in a vacuum, lubrication is limited to grease. This limits bearing life and speed. In addition, the old configuration employs two voice-coil electromagnetic shakers to apply oscillatory axial forces or transverse moments to the rotor shaft through a thrust bearing. The excitation amplitudes that can be imparted to the test article with this system are not adequate for components that are highly damped. It is expected that the new design will overcome these limitations
Control of Fan Blade Vibrations Using Piezoelectrics and Bi-Directional Telemetry
A novel wireless device which transfers supply power through induction to rotating operational amplifiers and transmits low voltage AC signals to and from a rotating body by way of radio telemetry has been successfully demonstrated in the NASA Glenn Research Center (GRC) Dynamic Spin Test Facility. In the demonstration described herein, a rotating operational amplifier provides controllable AC power to a piezoelectric patch epoxied to the surface of a rotating Ti plate. The amplitude and phase of the sinusoidal voltage command signal, transmitted wirelessly to the amplifier, was tuned to completely suppress the 3rd bending resonant vibration of the plate. The plate's 3rd bending resonance was excited using rotating magnetic bearing excitation while it spun at slow speed in a vacuum chamber. A second patch on the opposite side of the plate was used as a sensor. This paper discusses the characteristics of this novel device, the details of a spin test, results from a preliminary demonstration, and future plans
Electromagnetic Forces in a Hybrid Magnetic-Bearing Switched-Reluctance Motor
Analysis and experimental measurement of the electromagnetic force loads on the hybrid rotor in a novel hybrid magnetic-bearing switched-reluctance motor (MBSRM) have been performed. A MBSRM has the combined characteristics of a switched-reluctance motor and a magnetic bearing. The MBSRM discussed in this report has an eight-pole stator and a six-pole hybrid rotor, which is composed of circular and scalloped lamination segments. The hybrid rotor is levitated using only one set of four stator poles, while a second set of four stator poles imparts torque to the scalloped portion of the rotor, which is driven in a traditional switched reluctance manner by a processor. Static torque and radial force analysis were done for rotor poles that were oriented to achieve maximum and minimum radial force loads on the rotor. The objective is to assess whether simple one-dimensional magnetic circuit analysis is sufficient for preliminary evaluation of this machine, which may exhibit strong three-dimensional electromagnetic field behavior. Two magnetic circuit geometries, approximating the complex topology of the magnetic fields in and around the hybrid rotor, were employed in formulating the electromagnetic radial force equations. Reasonable agreement between the experimental and the theoretical radial force loads predictions was obtained with typical magnetic bearing derating factors applied to the predictions
Assessment of Technologies for Noncryogenic Hybrid Electric Propulsion
The Subsonic Fixed Wing Project of NASA's Fundamental Aeronautics Program is researching aircraft propulsion technologies that will lower noise, emissions, and fuel burn. One promising technology is noncryogenic electric propulsion, which could be either hybrid electric propulsion or turboelectric propulsion. Reducing dependence on the turbine engine would certainly reduce emissions. However, the weight of the electricmotor- related components that would have to be added would adversely impact the benefits of the smaller turbine engine. Therefore, research needs to be done to improve component efficiencies and reduce component weights. This study projects technology improvements expected in the next 15 and 30 years, including motor-related technologies, power electronics, and energy-storage-related technologies. Motor efficiency and power density could be increased through the use of better conductors, insulators, magnets, bearings, structural materials, and thermal management. Energy storage could be accomplished through batteries, flywheels, or supercapacitors, all of which expect significant energy density growth over the next few decades. A first-order approximation of the cumulative effect of each technology improvement shows that motor power density could be improved from 3 hp/lb, the state of the art, to 8 hp/lb in 15 years and 16 hp/lb in 30 years
The Century Survey Galactic Halo Project III: A Complete 4300 deg^2 Survey of Blue Horizontal Branch Stars in the Metal-Weak Thick Disk and Inner Halo
We present a complete spectroscopic survey of 2414 2MASS-selected blue
horizontal branch (BHB) candidates selected over 4300 deg^2 of the sky. We
identify 655 BHB stars in this non-kinematically selected sample. We calculate
the luminosity function of field BHB stars and find evidence for very few hot
BHB stars in the field. The BHB stars located at a distance from the Galactic
plane |Z|<4 kpc trace what is clearly a metal-weak thick disk population, with
a mean metallicity of [Fe/H]= -1.7, a rotation velocity gradient of
dv_{rot}/d|Z|= -28+-3.4 km/s in the region |Z|<6 kpc, and a density scale
height of h_Z= 1.26+-0.1 kpc. The BHB stars located at 5<|Z|<9 kpc are a
predominantly inner-halo population, with a mean metallicity of [Fe/H]= -2.0
and a mean Galactic rotation of -4+-31 km/s. We infer the density of halo and
thick disk BHB stars is 104+-37 kpc^-3 near the Sun, and the relative
normalization of halo to thick-disk BHB stars is 4+-1% near the Sun.Comment: 12 pages in emulateapj format, accepted for publication in February
A
- …