201 research outputs found

    Thickness dependent Curie temperatures of ferromagnetic Heisenberg films

    Full text link
    We develop a procedure for calculating the magnetic properties of a ferromagnetic Heisenberg film with single-ion anisotropy which is valid for arbitrary spin and film thickness. Applied to sc(100) and fcc(100) films with spin S=7/2 the theory yields the layer dependent magnetizations and Curie temperatures of films of various thicknesses making it possible to investigate magnetic properties of films at the interesting 2D-3D transition.Comment: 9 pages, 2 figures, accepted (Solid State Commun.

    Impurity-induced spin polarization and NMR line broadening in underdoped cuprates

    Full text link
    We present a theory of magnetic (S=1) Ni and nonmagnetic Zn impurities in underdoped cuprates. Both types of impurities are shown to induce S=1/2 moments on Cu sites in the proximity of the impurity, a process which is intimately related to the spin gap phenomenon in cuprates. Below a characteristic Kondo temperature, the Ni spin is partially screened by the Cu moments, resulting in an effective impurity spin S=1/2. We further analyze the Ruderman-Kittel-Kasiya-Yosida-type response of planar Cu spins to a polarization of the effective impurity moments and derive expressions for the corresponding ^{17}O NMR line broadening. The peculiar aspects of recent experimental NMR data can be traced back to different spatial characteristics of Ni and Zn moments as well as to an inherent temperature dependence of local antiferromagnetic correlations.Comment: PRB B1 01June9

    Defect and anisotropic gap induced quasi-one-dimensional modulation of local density of states in YBa2_2Cu3_3O7δ_{7-\delta}

    Full text link
    Motivated by recent angle-resolved photoemission spectroscopy (ARPES) measurement that superconducting YBa2_2Cu3_3O7δ_{7-\delta} (YBCO) exhibits a dx2y2+sd_{x^2-y^2} + s-symmetry gap, we show possible quasi-one-dimensional modulations of local density of states in YBCO. These aniostropic gap and defect induced stripe structures are most conspicuous at higher biases and arise due to the nesting effect associated with a Fermi liquid. Observation of these spectra by scanning tunneling microscopy (STM) would unify the picture among STM, ARPES, and inelastic neutron scattering for YBCO.Comment: 4 pages, 4 figure

    Local Defect in Metallic Quantum Critical Systems

    Full text link
    We present a theory of a single point, line or plane defect coupling to the square of the order parameter in a metallic system near a quantum critical point at or above its upper critical dimension. At criticality, a spin droplet is nucleated around the defect with droplet core size determined by the strength of the defect potential. Outside the core a universal slowly decaying tail of the droplet is found, leading to many dissipative channels coupling to the droplet and to a complete suppression of quantum tunneling. We propose an NMR experiment to measure the impurity-induced changes in the local spin susceptibility.Comment: 2 figures; 5 page

    Effect of magnetic frustration on single-hole spectral function in the t-t'-t''-J model

    Full text link
    We examine the effect of the magnetic frustration J' on the single-hole spectral function in the t-t'-t''-J model. At zero temperature, the exact diagonalization (ED) and the self-consistent Born approximation (SCBA) methods are used. We find that the frustration suppresses the quasiparticle (QP) weight at small momentum k, whereas the QP peak at k=(pi/2,pi/2) remains sharp. We also show the temperature dependence of the single-hole spectral function by using the ED method. It is found that the lineshapes at (pi/2,0) and (pi/2,pi/2) show different temperature dependence. These findings are consistent with the angle-resolved photoemission data on Sr2CuO2Cl2, and indicate the importance of the magnetic frustration on the electronic states of the insulating cuprates.Comment: 5 pages, 3 EPS figures, REVTeX, To be published in Phys. Rev. B, Vol. 59, Num. 3 (15 Jan. 1999

    Double-layer Heisenberg antiferromagnet at finite temperature: Brueckner Theory and Quantum Monte Carlo simulations

    Full text link
    The double-layer Heisenberg antiferromagnet with intra- and inter-layer couplings JJ and JJ_\perp exhibits a zero temperature quantum phase transition between a quantum disordered dimer phase for g>gcg>g_c and a Neel phase with long range antiferromagnetic order for g<gcg<g_c, where g=J/Jg=J_\perp/J and gc2.5g_c \approx 2.5. We consider the behavior of the system at finite temperature for ggcg \ge g_c using two different and complementary approaches; an analytical Brueckner approximation and numerically exact quantum Monte Carlo simulations. We calculate the temperature dependent spin excitation spectrum (including the triplet gap), dynamic and static structure factors, the specific heat, and the uniform magnetic susceptibility. The agreement between the analytical and numerical approaches is excellent. For T0T \to 0 and ggcg \to g_c, our analytical results for the specific heat and the magnetic susceptibility coincide with those previously obtained within the nonlinear σ\sigma model approach for NN\to \infty. Our quantum Monte Carlo simulations extend to significantly lower temperatures than previously, allowing us to obtain accurate results for the asymptotic quantum critical behavior. We also obtain an improved estimate for the critical coupling: gc=2.525±0.002g_c = 2.525 \pm 0.002.Comment: 23 pages, 12 figure

    Resonant Raman Scattering in Antiferromagnets

    Full text link
    Two-magnon Raman scattering provides important information about electronic correlations in the insulating parent compounds of high-TcT_c materials. Recent experiments have shown a strong dependence of the Raman signal in B1gB_{1g} geometry on the frequency of the incoming photon. We present an analytical and numerical study of the Raman intensity in the resonant regime. It has been previously argued by one of us (A.Ch) and D. Frenkel that the most relevant contribution to the Raman vertex at resonance is given by the triple resonance diagram. We derive an expression for the Raman intensity in which we simultaneously include the enhancement due to the triple resonance and a final state interaction. We compute the two-magnon peak height (TMPH) as a function of incident frequency and find two maxima at ωres(1)2Δ+3J\omega^{(1)}_{res} \approx 2\Delta + 3J and ωres(2)2Δ+8J\omega^{(2)}_{res} \approx 2\Delta + 8J. We argue that the high-frequency maximum is cut only by a quasiparticle damping, while the low-frequency maximum has a finite amplitude even in the absence of damping. We also obtain an evolution of the Raman profile from an asymmetric form around ωres(1)\omega^{(1)}_{res} to a symmetric form around ωres(2)\omega^{(2)}_{res}. We further show that the TMPH depends on the fermionic quasiparticle damping, the next-nearest neighbor hopping term tt^{\prime} and the corrections to the interaction vertex between light and the fermionic current. We discuss our results in the context of recent experiments by Blumberg et al. on Sr2CuO2Cl2Sr_2CuO_2Cl_2 and YBa2Cu3O6.1YBa_2Cu_3O_{6.1} and R\"{u}bhausen et al. on PrBa2Cu3O7PrBa_2Cu_3O_7 and show that the triple resonance theory yields a qualitative and to some extent also quantitative understanding of the experimental data.Comment: 19 pages, RevTeX, 16 figures embedded in the text, ps-file is also available at http://lifshitz.physics.wisc.edu/www/morr/morr_homepage.htm

    Spin 1/2 Magnetic Impurity in a 2D Magnetic System Close to Quantum Critical Point

    Full text link
    We consider a magnetic impurity in a spin liquid state of a magnetic system which is close to the quantum phase transition to the magnetically ordered state. There is similarity between this problem and the Kondo problem. We derive the impurity Green's function, consider renormalizations of the magnetic moments of the impurity, calculate critical indexes for the magnetic susceptibilities and finally consider specific heat and magnetic interaction of two impurities.Comment: 9 pages, 9 figure

    Friedel oscillations in a two-band Hubbard model for CuO chains

    Get PDF
    Friedel oscillations induced by open boundary conditions in a two-band Hubbard model for CuO chains are numerically studied. We find that for physically realistic parameters and close to quarter filling, these oscillations have a 2k_F modulation according with experimental results on YBa_2Cu_3O_{7-delta}. In addition, we predict that, for the same parameters, as hole doping is reduced from quarter filling to half filling, Friedel oscillations would acquire a 4k_F modulation, typical of a strongly correlated electrons regime. The 4k_F modulation dominates also in the electron doped region. The range of parameters varied is very broad, and hence the results reported could apply to other cuprates and other strongly correlated compounds with quasi-one dimensional structures. On a more theoretical side, we stress the fact that the copper and oxygen subsystems should be described by two different Luttinger liquid exponents.Comment: 7 pages, 7 eps figure
    corecore