33 research outputs found
Respiratory uncoupling by increased H+ or K+ flux is beneficial for heart mitochondrial turnover of reactive oxygen species but not for permeability transition
Background: Ischemic preconditioning has been proposed to involve changes in mitochondrial H+ and K+ fluxes, in particular through activation of uncoupling proteins and ATP-sensitive K+ channels (MitoK(ATP)). The objectives of the present study were to explore how increased H+ and K+ fluxes influence heart mitochondrial physiology with regard to production and scavenging of reactive oxygen species (ROS), volume changes and resistance to calcium-induced mitochondrial permeability transition (mPT). Results: Isolated rat heart mitochondria were exposed to a wide concentration range of the protonophore CCCP or the potassium ionophore valinomycin to induce increased H+ and K+ conductance, respectively. Simultaneous monitoring of mitochondrial respiration and calcium retention capacity (CRC) demonstrated that the relative increase in respiration caused by valinomycin or CCCP correlated with a decrease in CRC, and that no level of respiratory uncoupling was associated with enhanced resistance to mPT. Mitochondria suspended in hyperosmolar buffer demonstrated a dose-dependent reduction in CRC with increasing osmolarity. However, mitochondria in hypoosmolar buffer to increase matrix volume did not display increased CRC. ROS generation was reduced by both K+- and H+-mediated respiratory uncoupling. The ability of heart mitochondria to detoxify H2O2 was substantially greater than the production rate. The H2O2 detoxification was dependent on respiratory substrates and was dramatically decreased following calcium-induced mPT, but was unaffected by uncoupling via increased K+ and H+ conductance. Conclusion: It is concluded that respiratory uncoupling is not directly beneficial to rat heart mitochondrial resistance to calcium overload irrespective of whether H+ or K+ conductance is increased. The negative effects of respiratory uncoupling thus probably outweigh the reduction in ROS generation and a potential positive effect by increased matrix volume, resulting in a net sensitization of heart mitochondria to mPT activation
Temporal increase of platelet mitochondrial respiration is negatively associated with clinical outcome in patients with sepsis
Introduction: Mitochondrial dysfunction has been suggested as a contributing factor to the pathogenesis of sepsis-induced multiple organ failure. Also, restoration of mitochondrial function, known as mitochondrial biogenesis, has been implicated as a key factor for the recovery of organ function in patients with sepsis. Here we investigated temporal changes in platelet mitochondrial respiratory function in patients with sepsis during the first week after disease onset. Methods: Platelets were isolated from blood samples taken from 18 patients with severe sepsis or septic shock within 48 hours of their admission to the intensive care unit. Subsequent samples were taken on Day 3 to 4 and Day 6 to 7. Eighteen healthy blood donors served as controls. Platelet mitochondrial function was analyzed by high-resolution respirometry. Endogenous respiration of viable, intact platelets suspended in their own plasma or phosphate-buffered saline (PBS) glucose was determined. Further, in order to investigate the role of different dehydrogenases and respiratory complexes as well as to evaluate maximal respiratory activity of the mitochondria, platelets were permeabilized and stimulated with complex-specific substrates and inhibitors. Results: Platelets suspended in their own septic plasma exhibited increased basal non-phosphorylating respiration (state 4) compared to controls and to platelets suspended in PBS glucose. In parallel, there was a substantial increase in respiratory capacity of the electron transfer system from Day 1 to 2 to Day 6 to 7 as well as compared to controls in both intact and permeabilized platelets oxidizing Complex I and/or II-linked substrates. No inhibition of respiratory complexes was detected in septic patients compared to controls. Non-survivors, at 90 days, had a more elevated respiratory capacity at Day 6 to 7 as compared to survivors. Cytochrome c increased over the time interval studied but no change in mitochondrial DNA was detected. Conclusions: The results indicate the presence of a soluble plasma factor in the initial stage of sepsis inducing uncoupling of platelet mitochondria without inhibition of the electron transfer system. The mitochondrial uncoupling was paralleled by a gradual and substantial increase in respiratory capacity. This may reflect a compensatory response to severe sepsis or septic shock, that was most pronounced in non-survivors, likely correlating to the severity of the septic insult
miRNA-based rapid differentiation of purified neurons from hPSCs advancestowards quick screening for neuronal disease phenotypes in vitro
Obtaining differentiated cells with high physiological functions by an efficient, but simple and rapid differentiation method is crucial for modeling neuronal diseases in vitro using human pluripotent stem cells (hPSCs). Currently, methods involving the transient expression of one or a couple of transcription factors have been established as techniques for inducing neuronal differentiation in a rapid, single step. It has also been reported that microRNAs can function as reprogramming effectors for directly reprogramming human dermal fibroblasts to neurons. In this study, we tested the effect of adding neuronal microRNAs, miRNA-9/9*, and miR-124 (miR-9/9*-124), for the neuronal induction method of hPSCs using Tet-On-driven expression of the Neurogenin2 gene
Patients with sepsis exhibit increased mitochondrial respiratory capacity in peripheral blood immune cells
Introduction: In sepsis, mitochondria have been associated with both initial dysfunction and subsequent upregulation (biogenesis). However, the evolvement of mitochondrial function in sepsis over time is largely unknown, and we therefore investigated mitochondrial respiration in peripheral blood immune cells (PBICs) in sepsis patients during the first week after admission to the intensive care unit (ICU). Methods: PBICs from 20 patients with severe sepsis or septic shock were analyzed with high-resolution respirometry 3 times after admission to the ICU (within 48 hours, days 3 to 4 and days 6 to 7). Mitochondrial DNA (mtDNA), cytochrome c (Cyt c), and citrate synthase (CS) were measured as indicators of cellular mitochondrial content. Results: In intact PBICs with endogenous substrates, a gradual increase in cellular respiration reached 173% of controls after 1 week (P = 0.001). In permeabilized cells, respiration using substrates of complex I, II, and IV were significantly increased days 1 to 2, reaching 137%, 130%, and 173% of controls, respectively. In parallel, higher levels of CS activity, mtDNA, and Cyt c content in PBICs (211%, 243%, and 331% of controls for the respective indicators were found at days 6 to 7; P < 0.0001). No differences in respiratory capacities were noted between survivors and nonsurvivors at any of the time points measured. Conclusions: PBICs from patients with sepsis displayed higher mitochondrial respiratory capacities compared with controls, due to an increased mitochondrial content, as indicated by increased mitochondrial DNA, protein content, and enzyme activity. The results argue against mitochondrial respiratory dysfunction in this type of cells in sepsis
Mitochondrial Respiratory Function in Peripheral Blood Cells from Huntington's Disease Patients
BackgroundPatients with Huntington's disease display symptoms from both the central nervous system and peripheral tissues. Mitochondrial dysfunction has been implicated as part of the pathogenesis of the disease and has been reported in brain tissue and extracerebral tissues, such as muscle and blood cells, but the results are inconsistent. Therefore, the authors performed a refined evaluation of mitochondrial function in 2 types of peripheral blood cells from 14 patients with Huntington's disease and 21 control subjects. Several hypotheses were predefined, including impaired mitochondrial complex II function (primary), complex I function (secondary), and maximum oxidative phosphorylation capacity (secondary) in patient cells.MethodsHigh-resolution respirometry was applied to viable platelets and mononuclear cells. Data were normalized to cell counts, citrate synthase activity, and mitochondrial DNA copy numbers.ResultsNormalized to citrate synthase activity, platelets from patients with Huntington's disease displayed respiratory dysfunction linked to complex I, complex II, and lower maximum oxidative phosphorylation capacity. No difference was seen in mononuclear cells or when platelet data were normalized to cell counts or mitochondrial DNA. The ratio of complex I respiration through maximum oxidative phosphorylation was significantly decreased in patients compared with controls. The corresponding ratio for complex II was unaffected.ConclusionsThe data indicate decreased function of mitochondrial complex I in peripheral blood cells from patients with Huntington's disease, although this could not be uniformly confirmed. The results do not confirm a systemic complex II dysfunction and do not currently support the use of mitochondrial function in blood cells as a biomarker for the disease
Mitochondrial dysfunction in blood cells from amyotrophic lateral sclerosis patients.
Mitochondrial dysfunction is implicated in amyotrophic lateral sclerosis, where the progressive degeneration of motor neurons results in muscle atrophy, paralysis and death. Abnormalities in both central nervous system and muscle mitochondria have previously been demonstrated in patient samples, indicating systemic disease. In this case-control study, venous blood samples were acquired from 24 amyotrophic lateral sclerosis patients and 21 age-matched controls. Platelets and peripheral blood mononuclear cells were isolated and mitochondrial oxygen consumption measured in intact and permeabilized cells with additions of mitochondrial substrates, inhibitors and titration of an uncoupler. Respiratory values were normalized to cell count and for two markers of cellular mitochondrial content, citrate synthase activity and mitochondrial DNA, respectively. Mitochondrial function was correlated with clinical staging of disease severity. Complex IV (cytochrome c-oxidase)-activity normalized to mitochondrial content was decreased in platelets from amyotrophic lateral sclerosis patients both when normalized to citrate synthase activity and mitochondrial DNA copy number. In mononuclear cells, complex IV-activity was decreased when normalized to citrate synthase activity. Mitochondrial content was increased in amyotrophic lateral sclerosis patient platelets. In mononuclear cells, complex I activity declined and mitochondrial content increased progressively with advancing disease stage. The findings are, however, based on small subsets of patients and need to be confirmed. We conclude that when normalized to mitochondria-specific content, complex IV-activity is reduced in blood cells from amyotrophic lateral sclerosis patients and that there is an apparent compensatory increase in cellular mitochondrial content. This supports systemic involvement in amyotrophic lateral sclerosis and suggests further study of mitochondrial function in blood cells as a future biomarker for the disease
Re-evaluation of mitochondrial permeability transition as a primary neuroprotective target of minocycline.
Minocycline has been shown to be neuroprotective in ischemic and neurodegenerative disease models and could potentially be relevant for clinical use. We revisited the hypothesis that minocycline acts through direct inhibition of calcium-induced mitochondrial permeability transition (mPT) resulting in reduced release of cytochrome c (cyt c). Minocycline, at high dosage, was found to prevent calcium-induced mitochondrial swelling under energized conditions similarly to the mPT inhibitor cyclosporin A (CsA) in rodent mitochondria derived from the CNS. In contrast to CsA, minocycline dose-dependently reduced mitochondrial calcium retention capacity (CRC) and respiratory control ratios and was ineffective in the de-energized mPT assay. Further, minocycline did not inhibit calcium- or tBid-induced cyt c release. We conclude that the neuroprotective mechanism of minocycline is likely not related to direct inhibition of mPT and propose that the mitochondrial effects of minocycline may contribute to toxicity rather than tissue protection at high dosing in animals and humans
Cytokine and nitric oxide levels in patients with sepsis--temporal evolvement and relation to platelet mitochondrial respiratory function.
BACKGROUND: The levels of nitric oxide (NO) and various cytokines are known to be increased during sepsis. These signaling molecules could potentially act as regulators and underlie the enhancement of mitochondrial function described in the later phase of sepsis. Therefore, we investigated the correlation between observed changes in platelet mitochondrial respiration and a set of pro- and anti-inflammatory cytokines as well as NO plasma levels in patients with sepsis. METHODS AND RESULTS: Platelet mitochondrial respiration and levels of TNFα, MCP-1 (monocyte chemotactic protein-1), INFγ (interferon-γ), IL-1β, IL-4, IL-5, IL-6, IL-8, IL-10 and IL-17 and NO were analyzed in 38 patients with severe sepsis or septic shock at three time points during one week following admission to the ICU. Citrate synthase, mitochondrial DNA and cytochrome c were measured as markers of cellular mitochondrial content. All mitochondrial respiratory states increased over the week analyzed (p<0.001). IL-8 levels correlated with maximal mitochondrial respiration on day 6-7 (p = 0.02, r2 = 0.22) and was also higher in non-survivors compared to survivors on day 3-4 and day 6-7 (p = 0.03 respectively). Neither NO nor any of the other cytokines measured correlated with respiration or mortality. Cytochrome c levels were decreased at day 1-2 by 24±5% (p = 0.03) and returned towards values of the controls at the last two time points. Citrate synthase activity and mitochondrial DNA levels were similar to controls and remained constant throughout the week. CONCLUSIONS: Out of ten analyzed cytokines and nitric oxide, IL-8 correlated with the observed increase in mitochondrial respiration. This suggests that cytokines as well as NO do not play a prominent role in the regulation of platelet mitochondrial respiration in sepsis. Further, the respiratory increase was not accompanied by an increase in markers of mitochondrial content, suggesting a possible role for post-translational enhancement of mitochondrial respiration rather than augmented mitochondrial mass
Calcium-induced generation of reactive oxygen species in brain mitochondria is mediated by permeability transition.
Mitochondrial uptake of calcium in excitotoxicity is associated with subsequent increase in reactive oxygen species (ROS) generation and delayed cellular calcium deregulation in ischemic and neurodegenerative insults. The mechanisms linking mitochondrial calcium uptake and ROS production remain unknown but activation of the mitochondrial permeability transition (mPT) may be one such mechanism. In the present study, calcium increased ROS generation in isolated rodent brain and human liver mitochondria undergoing mPT despite an associated loss of membrane potential, NADH and respiration. Unspecific permeabilization of the inner mitochondrial membrane by alamethicin likewise increased ROS independently of calcium, and the ROS increase was further potentiated if NAD(H) was added to the system. Importantly, calcium per se did not induce a ROS increase unless mPT was triggered. Twenty-one cyclosporin A analogs were evaluated for inhibition of calcium-induced ROS and their efficacy clearly paralleled their potency of inhibiting mPT-mediated mitochondrial swelling. We conclude that while intact respiring mitochondria possess powerful antioxidant capability, mPT induces a dysregulated oxidative state with loss of GSH- and NADPH-dependent ROS detoxification. We propose that mPT is a significant cause of pathological ROS generation in excitotoxic cell death