5 research outputs found

    Multilayered Controlled Drug Release Silk Fibroin Nanofilm by Manipulating Secondary Structure

    No full text
    Many studies of drug delivery nanoplatforms have explored drug loading affinity and controlled release. The nanoplatforms can be influenced by their inherent building blocks. Natural polypeptide silk fibroin (SF) is an excellent nanoplatform material because of its high biocompatibility and unique structural properties. SF secondary structures have different properties that can be changed by external stimuli. Thus, the characterization of SF-containing platforms is strongly affected by secondary structure transformations. Structural changes can occur spontaneously, which hinders the control of structural variation in aqueous conditions. Herein, we successfully prepared a controllable secondary structure composed of SF/heparin (HEP) layer-by-layer assembled nanofilms using simple solvents (glycerol and methanol). SF in the SF/HEP nanofilms takes up than 90%, which means configurations of SF have a strong effect on the character of the nanofilms. We investigated the degradation profiles of SF/HEP nanofilms depending on their β-sheet contents and demonstrated an immediate correlation between the transformation of secondary structures inside the nanofilms and the degree of degradation of nanofilms. Finally, SF/HEP nanofilms were used as a delivery platform for incorporating the anticancer drug epirubicin (EPI). We could control the loading efficiency and release profile of EPI with various β-sheet contents of the nanofilms

    Synthesis and Characterization of Functional Nanofilm-Coated Live Immune Cells

    No full text
    Layer-by-layer (LbL) assembly techniques have been extensively studied in cell biology because of their simplicity of preparation and versatility. The applications of the LbL platform technology using polysaccharides, silicon, and graphene have been investigated. However, the applications of the above-mentioned technology using living cells remain to be fully understood. This study demonstrates a living cell-based LbL platform using various types of living cells. In addition, it confirms that the surplus charge on the outer surface of the coated cells can be used to bind the target protein. We develop a living cell-based LbL platform technology by stacking layers of hyaluronic acid (HA) and poly-l-lysine (PLL). The HA/PLL stacking results in three bilayers with a thickness of 4 ± 1 nm on the cell surface. Furthermore, the multilayer nanofilms on the cells are completely degraded after 3 days of the application of the LbL method. We also evaluate and visualize three bilayers of the nanofilm on adherent (AML-12 cells)-, nonadherent (trypsin-treated AML-12 cells)-, and circulation type [peripheral blood mononuclear cells (PBMCs)] cells by analyzing the zeta potential, cell viability, and imaging via scanning electron microscopy and confocal microscopy. Finally, we study the cytotoxicity of the nanofilm and characteristic functions of the immune cells after the nanofilm coating. The multilayer nanofilms are not acutely cytotoxic and did not inhibit the immune response of the PBMCs against stimulant. We conclude that a two bilayer nanofilm would be ideal for further study in any cell type. The living cell-based LbL platform is expected to be useful for a variety of applications in cell biology

    Regulation of the Inevitable Water-Responsivity of Silk Fibroin Biopolymer by Polar Amino Acid Activation

    No full text
    In nature, water is vital for maintaining homeostasis. Particularly, organisms (e.g., plant leaf, bird feather) exploit water fluidics for motions. Hydration-adaptive crystallization is the representative water-responsive actuation of biopolymers. This crystallization has inspired the development of intelligent human–robot interfaces. At the same time, it hinders the consistent adhesion of tissue adhesive. As hydration-adaptive crystallization is inevitable, the on-demand control of crystallization is desirable in the innovative biopolymeric biomedical systems. To this end, this study developed an amino acid-based technology to artificially up- or down-regulate the inevitable crystallization of silk fibroin. A case II diffusion model was constructed, and it revealed that the activity of polar amino acid is related to crystallization kinetics. Furthermore, the water dynamics study suggested that active amino acid stabilizes crystallization-triggering water molecules. As a proof-of-concept, we verified that a 30% increase in the activity of serine resulted in a 50% decrease in the crystallization rate. Furthermore, the active amino acid-based suppression of hydration-adaptive crystallization enabled the silk fibroin to keep its robust adhesion (approximately 160 kJ m–3) by reducing the water-induced loss of adhesive force. The proposed silk fibroin was demonstrated as a stable tissue adhesive applied on ex vivo porcine mandible tissue. This amino acid-based regulation of hydration-adaptive crystallization will pioneer next-generation biopolymer-based healthcare

    Regulation of the Inevitable Water-Responsivity of Silk Fibroin Biopolymer by Polar Amino Acid Activation

    No full text
    In nature, water is vital for maintaining homeostasis. Particularly, organisms (e.g., plant leaf, bird feather) exploit water fluidics for motions. Hydration-adaptive crystallization is the representative water-responsive actuation of biopolymers. This crystallization has inspired the development of intelligent human–robot interfaces. At the same time, it hinders the consistent adhesion of tissue adhesive. As hydration-adaptive crystallization is inevitable, the on-demand control of crystallization is desirable in the innovative biopolymeric biomedical systems. To this end, this study developed an amino acid-based technology to artificially up- or down-regulate the inevitable crystallization of silk fibroin. A case II diffusion model was constructed, and it revealed that the activity of polar amino acid is related to crystallization kinetics. Furthermore, the water dynamics study suggested that active amino acid stabilizes crystallization-triggering water molecules. As a proof-of-concept, we verified that a 30% increase in the activity of serine resulted in a 50% decrease in the crystallization rate. Furthermore, the active amino acid-based suppression of hydration-adaptive crystallization enabled the silk fibroin to keep its robust adhesion (approximately 160 kJ m–3) by reducing the water-induced loss of adhesive force. The proposed silk fibroin was demonstrated as a stable tissue adhesive applied on ex vivo porcine mandible tissue. This amino acid-based regulation of hydration-adaptive crystallization will pioneer next-generation biopolymer-based healthcare
    corecore