2 research outputs found

    Corner inlet and Nooramunga habitat mapping project

    Full text link
    Deakin University and the University of Tasmania were commissioned by Parks Victoria (PV) to create two updated habitat maps for areas within the Corner Inlet and Nooramunga Marine and Coastal Park and Ramsar area. The team obtained a ground-truth data set using in situ video and still photographs. This dataset was used to develop and assess predictive models of benthic marine habitat distributions incorporating data from both ALOS (Advanced Land Observation Satellite) imagery atmospherically corrected by CSIRO and LiDAR (Light Detection and Ranging) bathymetry. This report describes the results of the mapping effort as well as the methodology used to produce these habitat maps. Overall accuracies of habitat classifications were good, returning overall accuracies &gt;73 % and kappa values &gt; 0.62 for both study localities. Habitats predicted with highest accuracies included Zosteraceae in Nooramunga (91 %), reef in Corner Inlet (80 %), and bare sediment (no-visible macrobiota/no-visible seagrass classes; both &gt; 76 %). The majority of classification errors were due to the misclassification of areas of sparse seagrass as bare sediment. For the Corner Inlet study locality the no-visible macrobiota (10,698 ha), Posidonia (4,608 ha) and Zosteraceae (4,229 ha) habitat classes covered the most area. In Nooramunga no-visible seagrass (5,538 ha), Zosteraceae (4,060 ha) and wet saltmarsh (1,562 ha) habitat classes were most dominant.In addition to the commissioned work preliminary change detection analyses were undertaken as part of this project. These analyses indicated shifts in habitat extents in both study localities since the late 1990s/2000. In particular, a post-classification analysis highlighted that there were considerable increases in seagrass habitat (primarily Zosteraceae) throughout the littoral zones and river/creek mouths of both study localities. Further, the numerous channel systems remained stable and were free of seagrass at both times. A substantial net loss of Posidonia in the Corner Inlet locality is likely but requires further investigation due to potential misclassifications between habitats in both the 1998 map (Roob et al. 1998) and the current mapping. While the unsupervised Independent Components Analysis (ICA) change detection technique indicated some changes in habitat extent and distribution, considerable areas of habitat change observed in the post-classification approach are questionable, and may reflect misclassifications rather than real change. A particular example of this is an apparent large decrease in Zosteraceae and increase in Posidonia being related to the classification of Posidonia beds as Zosteraceae in the 1998 mapping. Despite this, we believe that changes indicated by both the ICA and post-classification approaches have a high likelihood of being &lsquo;actual&rsquo; change. A pattern of gains and losses of Zosteraceae in the region north of Stockyard channel is an example of this. Further analyses and refinements of approaches in change detection analyses such as would improve confidence in the location and extent of habitat changes over this time period.This work has been successful in providing new baseline maps using a repeatable method meaning that any future changes in intertidal and shallow water marine habitats may be assessed in a consistent way with quantitative error assessments. In wider use, these maps should also allow improved conservation planning, advance fisheries and catchment management, and progress infrastructure planning to limit impacts on the Inlet environment. <br /

    Habitat suitability for marine fishes using presence-only modelling and multibeam sonar

    Full text link
    Improved access to multibeam sonar and underwater video technology is enabling scientists to use spatially-explicit, predictive modelling to improve our understanding of marine ecosystems. With the growing number of modelling approaches available, knowledge of the relative performance of different models in the marine environment is required. Habitat suitability of 5 demersal fish taxa in Discovery Bay, south-east Australia, were modelled using 10 presence-only algorithms: BIOCLIM, DOMAIN, ENFA (distance geometric mean [GM], distance harmonic mean [HM], median [M], area-adjusted median [Ma], median + extremum [Me], area-adjusted median + extremum [Mae] and minimum distance [Min]), and MAXENT. Model performance was assessed using kappa and area under curve (AUC) of the receiver operator characteristic. The influence of spatial range (area of occupancy) and environmental niches (marginality and tolerance) on modelling performance were also tested. MAXENT generally performed best, followed by ENFA-GM and -HM, DOMAIN, BIOCLIM, ENFA-M, -Min, -Ma, -Mae and -Me algorithms. Fish with clearly definable niches (i.e. high marginality) were most accurately modelled. Generally, Euclidean distance to nearest reef, HSI-b (backscatter), rugosity and maximum curvature were the most important variables in determining suitable habitat for the 5 demersal fish taxa investigated. This comparative study encourages ongoing use of presence-only approaches, particularly MAXENT, in modelling suitable habitat for demersal marine fishes
    corecore