1,081 research outputs found
An in-depth view of the microscopic dynamics of Ising spin glasses at fixed temperature
Using the dedicated computer Janus, we follow the nonequilibrium dynamics of
the Ising spin glass in three dimensions for eleven orders of magnitude. The
use of integral estimators for the coherence and correlation lengths allows us
to study dynamic heterogeneities and the presence of a replicon mode and to
obtain safe bounds on the Edwards-Anderson order parameter below the critical
temperature. We obtain good agreement with experimental determinations of the
temperature-dependent decay exponents for the thermoremanent magnetization.
This magnitude is observed to scale with the much harder to measure coherence
length, a potentially useful result for experimentalists. The exponents for
energy relaxation display a linear dependence on temperature and reasonable
extrapolations to the critical point. We conclude examining the time growth of
the coherence length, with a comparison of critical and activated dynamics.Comment: 38 pages, 26 figure
Matching microscopic and macroscopic responses in glasses
We first reproduce on the Janus and Janus II computers a milestone experiment
that measures the spin-glass coherence length through the lowering of
free-energy barriers induced by the Zeeman effect. Secondly we determine the
scaling behavior that allows a quantitative analysis of a new experiment
reported in the companion Letter [S. Guchhait and R. Orbach, Phys. Rev. Lett.
118, 157203 (2017)]. The value of the coherence length estimated through the
analysis of microscopic correlation functions turns out to be quantitatively
consistent with its measurement through macroscopic response functions.
Further, non-linear susceptibilities, recently measured in glass-forming
liquids, scale as powers of the same microscopic length.Comment: 6 pages, 4 figure
Critical Behavior of Three-Dimensional Disordered Potts Models with Many States
We study the 3D Disordered Potts Model with p=5 and p=6. Our numerical
simulations (that severely slow down for increasing p) detect a very clear spin
glass phase transition. We evaluate the critical exponents and the critical
value of the temperature, and we use known results at lower values to
discuss how they evolve for increasing p. We do not find any sign of the
presence of a transition to a ferromagnetic regime.Comment: 9 pages and 9 Postscript figures. Final version published in J. Stat.
Mec
The three dimensional Ising spin glass in an external magnetic field: the role of the silent majority
We perform equilibrium parallel-tempering simulations of the 3D Ising
Edwards-Anderson spin glass in a field. A traditional analysis shows no signs
of a phase transition. Yet, we encounter dramatic fluctuations in the behaviour
of the model: Averages over all the data only describe the behaviour of a small
fraction of it. Therefore we develop a new approach to study the equilibrium
behaviour of the system, by classifying the measurements as a function of a
conditioning variate. We propose a finite-size scaling analysis based on the
probability distribution function of the conditioning variate, which may
accelerate the convergence to the thermodynamic limit. In this way, we find a
non-trivial spectrum of behaviours, where a part of the measurements behaves as
the average, while the majority of them shows signs of scale invariance. As a
result, we can estimate the temperature interval where the phase transition in
a field ought to lie, if it exists. Although this would-be critical regime is
unreachable with present resources, the numerical challenge is finally well
posed.Comment: 42 pages, 19 figures. Minor changes and added figure (results
unchanged
Critical parameters of the three-dimensional Ising spin glass
We report a high-precision finite-size scaling study of the critical behavior
of the three-dimensional Ising Edwards-Anderson model (the Ising spin glass).
We have thermalized lattices up to L=40 using the Janus dedicated computer. Our
analysis takes into account leading-order corrections to scaling. We obtain Tc
= 1.1019(29) for the critical temperature, \nu = 2.562(42) for the thermal
exponent, \eta = -0.3900(36) for the anomalous dimension and \omega = 1.12(10)
for the exponent of the leading corrections to scaling. Standard (hyper)scaling
relations yield \alpha = -5.69(13), \beta = 0.782(10) and \gamma = 6.13(11). We
also compute several universal quantities at Tc.Comment: 9 pages, 5 figure
Thermodynamic glass transition in a spin glass without time-reversal symmetry
Spin glasses are a longstanding model for the sluggish dynamics that appears
at the glass transition. However, spin glasses differ from structural glasses
for a crucial feature: they enjoy a time reversal symmetry. This symmetry can
be broken by applying an external magnetic field, but embarrassingly little is
known about the critical behaviour of a spin glass in a field. In this context,
the space dimension is crucial. Simulations are easier to interpret in a large
number of dimensions, but one must work below the upper critical dimension
(i.e., in d<6) in order for results to have relevance for experiments. Here we
show conclusive evidence for the presence of a phase transition in a
four-dimensional spin glass in a field. Two ingredients were crucial for this
achievement: massive numerical simulations were carried out on the Janus
special-purpose computer, and a new and powerful finite-size scaling method.Comment: 10 pages, 6 figure
Nature of the spin-glass phase at experimental length scales
We present a massive equilibrium simulation of the three-dimensional Ising
spin glass at low temperatures. The Janus special-purpose computer has allowed
us to equilibrate, using parallel tempering, L=32 lattices down to T=0.64 Tc.
We demonstrate the relevance of equilibrium finite-size simulations to
understand experimental non-equilibrium spin glasses in the thermodynamical
limit by establishing a time-length dictionary. We conclude that
non-equilibrium experiments performed on a time scale of one hour can be
matched with equilibrium results on L=110 lattices. A detailed investigation of
the probability distribution functions of the spin and link overlap, as well as
of their correlation functions, shows that Replica Symmetry Breaking is the
appropriate theoretical framework for the physically relevant length scales.
Besides, we improve over existing methodologies to ensure equilibration in
parallel tempering simulations.Comment: 48 pages, 19 postscript figures, 9 tables. Version accepted for
publication in the Journal of Statistical Mechanic
Triglyceride/HDL ratio and its impact on the risk of diabetes mellitus development during ART
OBJECTIVES: Our primary aim was to study diabetes mellitus (DM) arising during combination ART (cART) and to attempt to identify associations between these cases and triglycerides (TRG) and the TRG to HDL-cholesterol (TRG/HDL) ratio. Our secondary aim was to analyse the association between DM development and hepatic fibrosis.METHODS: This was a retrospective cohort study. Patients from the Icona Foundation study initiating first-line cART between 1997 and 2013 were selected and observed until new-onset DM or most recent clinical follow-up. The predictive value of TRG and TRG/HDL ratio levels on DM was evaluated using multivariable Poisson regression models.RESULTS: Three-thousand, five-hundred and forty-six patients (males, 73.7%; median age, 38 years; median BMI, 23.1 kg/m(2); and hepatitis C virus antibody positive, 22.1%) were included. Of these, 80 developed DM over 13 911 person-years of follow-up (PYFU), corresponding to 5.7 cases per 1000 PYFU (95% CI = 4.6-7.1). At multivariable analysis, latest TRG/HDL ratio, when high, was associated with significant increases in DM risk [relative risk (RR) = 1.63; 95% CI = 1.32-2.01 per 10 points higher], while current TRG, in contrast, was associated with new-onset DM only at crude analysis. Advanced liver fibrosis (defined as fibrosis-4 index >3.25) was also shown to be an independent risk factor for DM (RR = 2.91; 95% CI = 1.10-7.72).CONCLUSIONS: High TRG/HDL ratio predicted risk of new-onset DM, independently of other traditional risk factors. Furthermore, our findings suggest that advanced hepatic fibrosis, estimated using the fibrosis-4 score, could provide an additional predictor for DM
- …