1,081 research outputs found

    An in-depth view of the microscopic dynamics of Ising spin glasses at fixed temperature

    Full text link
    Using the dedicated computer Janus, we follow the nonequilibrium dynamics of the Ising spin glass in three dimensions for eleven orders of magnitude. The use of integral estimators for the coherence and correlation lengths allows us to study dynamic heterogeneities and the presence of a replicon mode and to obtain safe bounds on the Edwards-Anderson order parameter below the critical temperature. We obtain good agreement with experimental determinations of the temperature-dependent decay exponents for the thermoremanent magnetization. This magnitude is observed to scale with the much harder to measure coherence length, a potentially useful result for experimentalists. The exponents for energy relaxation display a linear dependence on temperature and reasonable extrapolations to the critical point. We conclude examining the time growth of the coherence length, with a comparison of critical and activated dynamics.Comment: 38 pages, 26 figure

    Matching microscopic and macroscopic responses in glasses

    Get PDF
    We first reproduce on the Janus and Janus II computers a milestone experiment that measures the spin-glass coherence length through the lowering of free-energy barriers induced by the Zeeman effect. Secondly we determine the scaling behavior that allows a quantitative analysis of a new experiment reported in the companion Letter [S. Guchhait and R. Orbach, Phys. Rev. Lett. 118, 157203 (2017)]. The value of the coherence length estimated through the analysis of microscopic correlation functions turns out to be quantitatively consistent with its measurement through macroscopic response functions. Further, non-linear susceptibilities, recently measured in glass-forming liquids, scale as powers of the same microscopic length.Comment: 6 pages, 4 figure

    Critical Behavior of Three-Dimensional Disordered Potts Models with Many States

    Get PDF
    We study the 3D Disordered Potts Model with p=5 and p=6. Our numerical simulations (that severely slow down for increasing p) detect a very clear spin glass phase transition. We evaluate the critical exponents and the critical value of the temperature, and we use known results at lower pp values to discuss how they evolve for increasing p. We do not find any sign of the presence of a transition to a ferromagnetic regime.Comment: 9 pages and 9 Postscript figures. Final version published in J. Stat. Mec

    The three dimensional Ising spin glass in an external magnetic field: the role of the silent majority

    Full text link
    We perform equilibrium parallel-tempering simulations of the 3D Ising Edwards-Anderson spin glass in a field. A traditional analysis shows no signs of a phase transition. Yet, we encounter dramatic fluctuations in the behaviour of the model: Averages over all the data only describe the behaviour of a small fraction of it. Therefore we develop a new approach to study the equilibrium behaviour of the system, by classifying the measurements as a function of a conditioning variate. We propose a finite-size scaling analysis based on the probability distribution function of the conditioning variate, which may accelerate the convergence to the thermodynamic limit. In this way, we find a non-trivial spectrum of behaviours, where a part of the measurements behaves as the average, while the majority of them shows signs of scale invariance. As a result, we can estimate the temperature interval where the phase transition in a field ought to lie, if it exists. Although this would-be critical regime is unreachable with present resources, the numerical challenge is finally well posed.Comment: 42 pages, 19 figures. Minor changes and added figure (results unchanged

    Critical parameters of the three-dimensional Ising spin glass

    Full text link
    We report a high-precision finite-size scaling study of the critical behavior of the three-dimensional Ising Edwards-Anderson model (the Ising spin glass). We have thermalized lattices up to L=40 using the Janus dedicated computer. Our analysis takes into account leading-order corrections to scaling. We obtain Tc = 1.1019(29) for the critical temperature, \nu = 2.562(42) for the thermal exponent, \eta = -0.3900(36) for the anomalous dimension and \omega = 1.12(10) for the exponent of the leading corrections to scaling. Standard (hyper)scaling relations yield \alpha = -5.69(13), \beta = 0.782(10) and \gamma = 6.13(11). We also compute several universal quantities at Tc.Comment: 9 pages, 5 figure

    Thermodynamic glass transition in a spin glass without time-reversal symmetry

    Get PDF
    Spin glasses are a longstanding model for the sluggish dynamics that appears at the glass transition. However, spin glasses differ from structural glasses for a crucial feature: they enjoy a time reversal symmetry. This symmetry can be broken by applying an external magnetic field, but embarrassingly little is known about the critical behaviour of a spin glass in a field. In this context, the space dimension is crucial. Simulations are easier to interpret in a large number of dimensions, but one must work below the upper critical dimension (i.e., in d<6) in order for results to have relevance for experiments. Here we show conclusive evidence for the presence of a phase transition in a four-dimensional spin glass in a field. Two ingredients were crucial for this achievement: massive numerical simulations were carried out on the Janus special-purpose computer, and a new and powerful finite-size scaling method.Comment: 10 pages, 6 figure

    Nature of the spin-glass phase at experimental length scales

    Full text link
    We present a massive equilibrium simulation of the three-dimensional Ising spin glass at low temperatures. The Janus special-purpose computer has allowed us to equilibrate, using parallel tempering, L=32 lattices down to T=0.64 Tc. We demonstrate the relevance of equilibrium finite-size simulations to understand experimental non-equilibrium spin glasses in the thermodynamical limit by establishing a time-length dictionary. We conclude that non-equilibrium experiments performed on a time scale of one hour can be matched with equilibrium results on L=110 lattices. A detailed investigation of the probability distribution functions of the spin and link overlap, as well as of their correlation functions, shows that Replica Symmetry Breaking is the appropriate theoretical framework for the physically relevant length scales. Besides, we improve over existing methodologies to ensure equilibration in parallel tempering simulations.Comment: 48 pages, 19 postscript figures, 9 tables. Version accepted for publication in the Journal of Statistical Mechanic

    Triglyceride/HDL ratio and its impact on the risk of diabetes mellitus development during ART

    Get PDF
    OBJECTIVES: Our primary aim was to study diabetes mellitus (DM) arising during combination ART (cART) and to attempt to identify associations between these cases and triglycerides (TRG) and the TRG to HDL-cholesterol (TRG/HDL) ratio. Our secondary aim was to analyse the association between DM development and hepatic fibrosis.METHODS: This was a retrospective cohort study. Patients from the Icona Foundation study initiating first-line cART between 1997 and 2013 were selected and observed until new-onset DM or most recent clinical follow-up. The predictive value of TRG and TRG/HDL ratio levels on DM was evaluated using multivariable Poisson regression models.RESULTS: Three-thousand, five-hundred and forty-six patients (males, 73.7%; median age, 38 years; median BMI, 23.1 kg/m(2); and hepatitis C virus antibody positive, 22.1%) were included. Of these, 80 developed DM over 13 911 person-years of follow-up (PYFU), corresponding to 5.7 cases per 1000 PYFU (95% CI = 4.6-7.1). At multivariable analysis, latest TRG/HDL ratio, when high, was associated with significant increases in DM risk [relative risk (RR) = 1.63; 95% CI = 1.32-2.01 per 10 points higher], while current TRG, in contrast, was associated with new-onset DM only at crude analysis. Advanced liver fibrosis (defined as fibrosis-4 index &gt;3.25) was also shown to be an independent risk factor for DM (RR = 2.91; 95% CI = 1.10-7.72).CONCLUSIONS: High TRG/HDL ratio predicted risk of new-onset DM, independently of other traditional risk factors. Furthermore, our findings suggest that advanced hepatic fibrosis, estimated using the fibrosis-4 score, could provide an additional predictor for DM
    • …
    corecore