14 research outputs found

    Computation of loop flows in electric grids with high wind energy penetration

    Get PDF
    2013 Fall.Includes bibliographical references.In a deregulated electricity market, the financial transmission rights (FTRs) and the bid-sell principle for energy trades are used to determine the expected power flows on transmission lines. Expected power flows are calculated by applying the superposition theorem on the approved electronic tags (e-tags). Multiple parallel paths in interconnected networks lead to division of power flows determined by the impedances of the parallel paths and the physical laws of electricity. The actual power flows in the network do not conform to the market expectations leading to unscheduled flows (USF) on transmission lines. USF have historically been estimated and accommodated deterministically for a given set of e-tags. However, wide-area interconnections experience variability and uncertainty due to a significant penetration of wind energy connected at the transmission level, thus imparting a stochastic nature to USF. A linear model, from the literature, has been adopted to model USF using a mathematical artifact called `minor loop flows'. This research develops an automated framework that provides accurate estimates of loop flows suitable for both market and network level accommodation of variable USF. This generic framework will be applicable to any power transmission network with intermittent energy resources. A loop detection algorithm (LDA) based on graph theory is proposed to detect loops in a transmission network of any size. The LDA is formulated as a modification of the A-star (A*) algorithm, the lowest ancestor theorem, and Dijkstra's algorithm. The LDA has an order of complexity of V2, where V is the total number of vertices or buses in the network under consideration. An application of a geographical information systems (GIS) technique has been established to obtain the transmission line layouts. The outcome of the LDA (i.e., minor loops) and line layouts (i.e., azimuth) are processed to compute the incidence matrix of the estimator. The variability due to the penetration of wind energy is accounted in the proposed framework using the probabilistic load flow analysis based on Monte Carlo simulations. Three techniques - ordinary least squares (OLS), analytic ridge regression (RR), and robust regression (M-estimators) - are used to estimate minor loop flows. The estimation techniques adhere to the auto-correction of the quality of estimates in case of ill-conditioning of the incidence matrix. Accuracy of loop flow estimates is highly significant, as they may be used for assigning economic responsibility of USF in electricity markets. Wind power generation companies (WGENCOs) employ forecasting models to participate in the primary electricity markets. Forecasting models used to predict the output of wind power plants are inherently erroneous and hence, their impacts on USF are studied. The impact of forecasting errors associated with the output of wind plants is investigated using the concept of prediction intervals rather than point accurate forecasts. Loop flow estimates corresponding to the prediction intervals of power output of wind power plants are computed to provide statistical bounds. The proposed framework is tested on the IEEE 14-bus and the IEEE 30-bus standard test systems with suitable modifications to represent wind energy penetration. Accurate loops are detected for the aforementioned test systems using the LDA. Thus, an automated and generic computation of loop flows is proposed along with a step-wise demonstration on IEEE test systems is provided. Future work and concluding remarks summarize the research work in this dissertation

    Probabilistic Study of Grid-connected Wind Electric Conversion Systems

    Get PDF
    Purpose of the study is to model the power output of Wind Electric Conversion System (WECS) as a random variable given that wind speeds incident on them is random. The model is extended to model probability functions for combined power outputs of multiple WECS located in a wind regime. The impact of variable region in the power characteristic on the probability functions for power output of individual and multiple WECS is investigated. This model is employed in performance assessment of wind farms within probabilistic framework to obtain its load supplying capability. Smart grid functionalities and Demand Side Management (DSM) are identified to have complementary behavior beneficial for optimal operation of electric grid. This is demonstrated using the obtained model for wind farms and a possible modification of load demand distribution function. The power output of WECS is a mixed random variable. Impact of exponent `n' on the probability density function (pdf) for power output of multiple WECS is "minor" for a low number of WECS. For a large number of WECS, there occurs a major redistribution of probabilities of power outputs leading to distinct pdf plots for different exponents. Increasing wind penetration leads to flatter power duration curves. Smart grid functionalities and DSM techniques if complemented in a suitable manner will assist in greater assimilation of wind energy into the grid.School of Electrical & Computer Engineerin

    Optimal Scheduling of Electrolyzer in Power Market with Dynamic Prices

    Full text link
    Optimal scheduling of hydrogen production in dynamic pricing power market can maximize the profit of hydrogen producer; however, it highly depends on the accurate forecast of hydrogen consumption. In this paper, we propose a deep leaning based forecasting approach for predicting hydrogen consumption of fuel cell vehicles in future taxi industry. The cost of hydrogen production is minimized by utilizing the proposed forecasting tool to reduce the hydrogen produced during high cost on-peak hours and guide hydrogen producer to store sufficient hydrogen during low cost off-peak hours

    Empirical study of simulation fidelity in geographically distributed real-time simulations

    No full text

    Electrolyzers Enhancing Flexibility in Electric Grids

    No full text
    This paper presents a real-time simulation with a hardware-in-the-loop (HIL)-based approach for verifying the performance of electrolyzer systems in providing grid support. Hydrogen refueling stations may use electrolyzer systems to generate hydrogen and are proposed to have the potential of becoming smarter loads that can proactively provide grid services. On the basis of experimental findings, electrolyzer systems with balance of plant are observed to have a high level of controllability and hence can add flexibility to the grid from the demand side. A generic front end controller (FEC) is proposed, which enables an optimal operation of the load on the basis of market and grid conditions. This controller has been simulated and tested in a real-time environment with electrolyzer hardware for a performance assessment. It can optimize the operation of electrolyzer systems on the basis of the information collected by a communication module. Real-time simulation tests are performed to verify the performance of the FEC-driven electrolyzers to provide grid support that enables flexibility, greater economic revenue, and grid support for hydrogen producers under dynamic conditions. The FEC proposed in this paper is tested with electrolyzers, however, it is proposed as a generic control topology that is applicable to any load

    Big data analytics in smart grids: State-of-theart, challenges, opportunities, and future directions

    No full text
    © 2019 Institution of Engineering and Technology. All rights reserved. Big data has potential to unlock novel groundbreaking opportunities in power grid that enhances a multitude of technical, social, and economic gains. As power grid technologies evolve in conjunction with measurement and communication technologies, this results in unprecedented amount of heterogeneous big data. In particular, computational complexity, data security, and operational integration of big data into power system planning and operational frameworks are the key challenges to transform the heterogeneous large dataset into actionable outcomes. In this context, suitable big data analytics combined with visualization can lead to better situational awareness and predictive decisions. This paper presents a comprehensive stateof-the-art review of big data analytics and its applications in power grids, and also identifies challenges and opportunities from utility, industry, and research perspectives. The paper analyzes research gaps and presents insights on future research directions to integrate big data analytics into power system planning and operational frameworks. Detailed information for utilities looking to apply big data analytics and insights on how utilities can enhance revenue streams and bring disruptive innovation are discussed. General guidelines for utilities to make the right investment in the adoption of big data analytics by unveiling interdependencies among critical infrastructures and operations are also provided
    corecore