387 research outputs found

    Tag Anti-collision Algorithm for RFID Systems with Minimum Overhead Information in the Identification Process

    Get PDF
    This paper describes a new tree based anti-collision algorithm for Radio Frequency Identification (RFID) systems. The proposed technique is based on fast parallel binary splitting (FPBS) technique. It follows a new identification path through the binary tree. The main advantage of the proposed protocol is the simple dialog between the reader and tags. It needs only one bit tag response followed by one bit reader reply (one-to-one bit dialog). The one bit reader response represents the collision report (0: collision; 1: no collision) of the tags' one bit message. The tag achieves self transmission control by dynamically updating its relative replying order due to the received collision report. The proposed algorithm minimizes the overhead transmitted bits per one tag identification. In the collision state, tags do modify their next replying order in the next bit level. Performed computer simulations have shown that the collision recovery scheme is very fast and simple even with the successive reading process. Moreover, the proposed algorithm outperforms most of the recent techniques in most cases

    On a high performance image compression technique

    Get PDF
    We introduce an optimal approach to colour image compression using a new scan method. We propose efficient methods to increase the compression ratio for colour images by dividing the colour image into non-overlapping blocks and applying a different compression ratio for these blocks depending on the classification of blocks into edge and non-edge blocks. In an edge block (a region that contains important information) the compression ratio is reduced to prevent loss of information, while in a non-edge block (a smooth region which does not have important information), a high compression ratio is used. The new proposed scan is used instead of the zigzag scan. A particular implementation of this approach was tested, and its performance was quantified using the peak signal-to-noise ratio. Numerical results indicated general improvements in visual quality for colour image coding

    α-Globin Messenger Ribonucleic Acid as a Molecular Marker for Determining the Age of Human Blood Spots in Different Temperatures

    Get PDF
    Background: Analyzing recovered evidence, such as blood which is one of the most encountered types of biological evidence, can provide information to establish the definite time when a crime was committed. This study aims to investigate the time- and temperature-related effects on human bloodstain’s α-globin messenger RNA expression and to estimate the bloodstain’s age using α-globin mRNA. Methods: A total of 22 blood samples were collected from healthy middle-aged volunteers (12 women and 10 men). After preparation, the samples were exposed to temperatures of 4°C, 24°C, and 40°C. Next, the mRNA expression of the α-globin gene was quantified by real-time RT-PCR at different time intervals of 0, 30, 90, and 150 days.Results: The α-globin gene expression showed the highest mean values by 0 day and at 4°C and the lowest mean values by 150 days and at 40°C. Samples from male participants showed higher mean values of α-globin gene expression compared to their female counterparts. A significant negative correlation was detected between α-globin gene expression and time interval. Meanwhile, a regression equation was formulated to estimate the time interval using the α-globin gene concentration.Conclusion: α-Globin mRNA could be a useful marker to estimate the age of human blood spots

    Discovery of two brominated oxindole alkaloids as staphylococcal DNA gyrase and pyruvate kinase inhibitors via inverse virtual screening

    Get PDF
    In the present study, a small marine-derived natural products library was assessed for antibacterial potential. Among 36 isolated compounds, a number of bis-indole derivatives exhibited growth-inhibitory activity towards Gram-positive strains (Bacillus subtilis and multidrug-resistant Staphylococcus aureus). 5- and 6-trisindoline (5-Tris and 6-Tris) were the most active derivatives (minimum inhibitory concentration, MIC, 4–8 µM) that were subsequently selected for anti-biofilm activity evaluation. Only 5-Tris was able to inhibit the staphylococcal biofilm formation starting at a 5 µM concentration. In order to investigate their possible molecular targets, both natural products were subjected to in silico inverse virtual screening. Among 20 target proteins, DNA gyrase and pyruvate kinase were the most likely to be involved in the observed antibacterial and anti-biofilm activities of both selected natural products. The in vitro validation and in silico binding mode studies revealed that 5-Tris could act as a dual enzyme inhibitor (IC50 11.4 ± 0.03 and 6.6 ± 0.05 µM, respectively), while 6-Tris was a low micromolar gyrase-B inhibitor (IC50 2.1 ± 0.08 µM), indicating that the bromine position plays a crucial role in the determination of the antibacterial lead compound inhibitory activity

    Induction of antibacterial metabolites by co-cultivation of two Red-Sea-sponge-associated actinomycetes <i>Micromonospora</i> sp. UR56 and <i>Actinokinespora</i> sp. EG49

    Get PDF
    Liquid chromatography coupled with high resolution mass spectrometry (LC-HRESMS)-assisted metabolomic profiling of two sponge-associated actinomycetes, Micromonospora sp. UR56 and Actinokineospora sp. EG49, revealed that the co-culture of these two actinomycetes induced the accumulation of metabolites that were not traced in their axenic cultures. Dereplication suggested that phenazine-derived compounds were the main induced metabolites. Hence, following large-scale co-fermentation, the major induced metabolites were isolated and structurally characterized as the already known dimethyl phenazine-1,6-dicarboxylate (1), phenazine-1,6-dicarboxylic acid mono methyl ester (phencomycin; 2), phenazine-1-carboxylic acid (tubermycin; 3), N-(2-hydroxyphenyl)-acetamide (9), and p-anisamide (10). Subsequently, the antibacterial, antibiofilm, and cytotoxic properties of these metabolites (1&ndash;3, 9, and 10) were determined in vitro. All the tested compounds except 9 showed high to moderate antibacterial and antibiofilm activities, whereas their cytotoxic effects were modest. Testing against Staphylococcus DNA gyrase-B and pyruvate kinase as possible molecular targets together with binding mode studies showed that compounds 1&ndash;3 could exert their bacterial inhibitory activities through the inhibition of both enzymes. Moreover, their structural differences, particularly the substitution at C-1 and C-6, played a crucial role in the determination of their inhibitory spectra and potency. In conclusion, the present study highlighted that microbial co-cultivation is an efficient tool for the discovery of new antimicrobial candidates and indicated phenazines as potential lead compounds for further development as antibiotic scaffold

    The genus <i>Micromonospora</i> as a model microorganism for bioactive natural product discovery

    Get PDF
    This review covers the development of the genus Micromonospora as a model for natural product research and the timeline of discovery progress from the classical bioassay-guided approaches through the application of genome mining and genetic engineering techniques that target specific products. It focuses on the reported chemical structures along with their biological activities and the synthetic and biosynthetic studies they have inspired. This survey summarizes the extraordinary biosynthetic diversity that can emerge from a widely distributed actinomycete genus and supports future efforts to explore under-explored species in the search for novel natural products

    ¹H-NMR metabolic profiling, antioxidant activity, and docking study of common medicinal plant-derived honey

    Get PDF
    The purpose of this investigation was to determine &sup1;H-NMR profiling and antioxidant activity of the most common types of honey, namely, citrus honey (HC1) (Morcott tangerine L. and Jaffa orange L.), marjoram honey (HM1) (Origanum majorana L.), and clover honey (HT1) (Trifolium alexandrinum L.), compared to their secondary metabolites (HC2, HM2, HT2, respectively). By using a &sup1;H-NMR-based metabolomic technique, PCA, and PLS-DA multivariate analysis, we found that HC2, HM2, HC1, and HM1 were clustered together. However, HT1 and HT2 were quite far from these and each other. This indicated that HC1, HM1, HC2, and HM2 have similar chemical compositions, while HT1 and HT2 were unique in their chemical profiles. Antioxidation potentials were determined colorimetrically for scavenging activities against DPPH, ABTS, ORAC, 5-LOX, and metal chelating activity in all honey extract samples and their secondary metabolites. Our results revealed that HC2 and HM2 possessed more antioxidant activities than HT2 in vitro. HC2 demonstrated the highest antioxidant effect in all assays, followed by HM2 (DPPH assay: IC50 2.91, 10.7 &mu;g/mL; ABTS assay: 431.2, 210.24 at 50 ug/mL Trolox equivalent; ORAC assay: 259.5, 234.8 at 50 ug/mL Trolox equivalent; 5-LOX screening assay/IC50: 2.293, 6.136 ug/mL; and metal chelating activity at 50 ug/mL: 73.34526%, 63.75881% inhibition). We suggest that the presence of some secondary metabolites in HC and HM, such as hesperetin, linalool, and caffeic acid, increased the antioxidant activity in citrus and marjoram compared to clover honey

    Epigenetic modifiers induce bioactive phenolic metabolites in the marine-derived fungus penicillium brevicompactum

    Get PDF
    Fungi usually contain gene clusters that are silent or cryptic under normal laboratory culture conditions. These cryptic genes could be expressed for a wide variety of bioactive compounds. One of the recent approaches to induce production of such cryptic fungal metabolites is to use histone deacetylases (HDACs) inhibitors. In the present study, the cultures of the marine-derived fungus Penicillium brevicompactum treated with nicotinamide and sodium butyrate were found to produce a lot of phenolic compounds. Nicotinamide treatment resulted in the isolation and identification of nine compounds 1&ndash;9. Sodium butyrate also enhanced the productivity of anthranilic acid (10) and ergosterol peroxide (11). The antioxidant as well as the antiproliferative activities of each metabolite were determined. Syringic acid (4), sinapic acid (5), and acetosyringone (6) exhibited potent in vitro free radical scavenging, (IC50 20 to 30 &micro;g/mL) and antiproliferative activities (IC50 1.14 to 1.71 &micro;M) against HepG2 cancer cell line. Furthermore, a pharmacophore model of the active compounds was generated to build up a structure-activity relationship
    corecore