23 research outputs found

    Arta (Calligonum Comosum, L'Her.) Shoot Extracts: Bio-Mediator in Silver Nanoparticles Formation and Antimycotic Potential

    No full text
    Environmentally friendly green synthesis of nanomaterial has a very significant part in nanotechnology. In the present research, the synthesis of silver nanoparticles (AgNPs) was established by treating silver ions with the aqueous extract of Calligonum comosum green shoots at room temperature. AgNPs formation was firstly detected by the colour change of mixed extract (plant extract and AgNO3). Further characterization was done by ultraviolet, (UV)-Vis spectrophotometer, transmission electron microscopy (TEM), scanning electron microscopy (SEM), zeta potential and fourier transform infrared spectroscopy (FTIR). The peak values for UV-VIS- spectroscopy were in the range of 440 nm, TEM micrograph showed spherical shape for the particles and zeta potential showed formation of negative charged nanoparticles with an average size of about 105.8 nm. 1635.41 and 3249.83 cm−1 are the peaks detected from the FTIR analysis. In this study, biosynthesized silver nanoparticles mediated by C. comosum were tested for their antimycotic activity using a well diffusion method against fungal species; Aspergillus flavus, Penicillium sp, Fusarium oxysporum. Our findings indicated that biosynthesized AgNPs showed an efficient antimycotic activity against tested species. The antimycotic action of AgNPs varied according to different fungal species. Results confirmed the ability of C. comosum green shoot extract to act as an reducing and stabilizing agent during the synthesis of AgNPs

    Phytoproduct, Arabic Gum and Opophytum forsskalii Seeds for Bio-Fabrication of Silver Nanoparticles: Antimicrobial and Cytotoxic Capabilities

    No full text
    The application of biological materials in synthesizing nanoparticles has become significant issue in nanotechnology. This research was designed to assess biogenic silver nanoparticles (AgNPs) fabricated using two aqueous extracts of Acacia arabica (Arabic Gum) (A-AgNPs) and Opophytum forsskalii (Samh) seed (O-AgNPs), which were used as reducing and capping agents in the NPs development, respectively. The current study is considered as the first report for AgNP preparation using Opophytum forsskalii extract. The dynamic light scattering, transmission electron microscopy, and scanning electron microscopy were employed to analyze the size and morphology of the biogenic AgNPs. Fourier transform infrared (FTIR) spectroscopy and chromatography/mass spectrometry (GC-MS) techniques were used to identify the possible phyto-components of plant extracts. The phyto-fabricated NPs were assessed for their antibacterial activity and also when combined with some antibiotics against Staphylococcus aureus (Gram-positive) and Pseudomonas aeruginosa and Escherichia coli (Gram-negative) and their anticandidal ability against Candida albicans using an agar well diffusion test. Furthermore, cytotoxicity against LoVo cancer cell lines was studied. The results demonstrated the capability of the investigated plant extracts to change Ag+ ions into spherical AgNPs with average size diameters of 91 nm for the prepared O-AgNPs and 75 nm for A-AgNPs. The phyto-fabricated AgNPs presented substantial antimicrobial capabilities with a zone diameter in the range of 10–29.3 mm. Synergistic effects against all tested strains were observed when the antibiotic and phyto-fabricated AgNPs were combined and assessed. The IC50 of the fabricated O-AgNPs against LoVo cancer cell lines was 28.32 μg/mL. Ten and four chemical components were identified in Acacia arabica (Arabic Gum) and Opophytum forsskalii seed extracts, respectively, by GC-MS that are expected as NPs reducing and capping agents. Current results could lead to options for further research, such as investigating the internal mechanism of AgNPs in bacteria, Candida spp., and LoVo cancer cell lines as well as identifying specific molecules with a substantial impact as metal-reducing agents and biological activities

    Biological Potential of Silver Nanoparticles Mediated by Leucophyllum frutescens and Russelia equisetiformis Extracts

    No full text
    Awareness about environmental concerns is increasing, specially the pollution resulting from nanoparticles (NPs) production, which has led to great interest in the usage of biogenic agents for their fabrication. The current investigation used eco-friendly organic phytomolecules from Leucophyllum frutescens and Russelia equisetiformis leaves extract for the first time in the fabrication of silver NPs from silver ions and further an assessment of their biological activities was performed. The leaves extract from both plant sources were used as capping and reducing agents and added to AgNO3. The mixtures were observed for colour changes, and after a stable dark brown colour was obtained, the NPs were separated and further investigated using dynamic light scattering, transmission electron microscopy and energy-dispersive X-ray spectroscopy. The Fourier transform infrared spectroscopy technique was employed to determine the active organic ingredients in the plant extracts. The prepared NPs were tested against three cell lines (two cancer ones and one normal control) and the effects observed using TEM and confocal laser scanning microscopy (LSM). Antibacterial activity against two Gram positive and two Gram negative species was examined and the synergistic effect of the ampicillin-NPs conjugate was studied. Findings showed successful conversion of Ag ions into L-AgNPs and R-AgNPs achieved using L.frutescens and R. equisetiformis extracts, respectively. A mean size of 112.9 nm for L-AgNPs and 151.7 nm for R-AgNPs and negative zeta potentials were noted. TEM analysis showed spherical NPs and EDS indicated Ag at 3 keV. Reduction in cancer cell viability with low half-maximal inhibitory concentrations was noted for both tested NPs. Structural changes and apoptotic features in the treated cancer cell lines were noted by TEM and cell death was confirmed by LSM. Furthermore, higher antibacterial activity was noticed against Gram positive compared with Gram negative bacteria as well as high synergistic effect was noted for the Amp-NPs conjugate, specially against Gram positive bacteria. The current investigation has thus developed an eco-friendly NPs synthesis route by applying plant extracts to efficiently produce NPs endowed with potential cytotoxic and antibacterial capacity, which therefore could be recommended as new approaches to overcome human diseases with minimal environmental impact

    Bimetallic nanoparticles and biochar produced by Adansonia Digitata shell and their effect against tomato pathogenic fungi

    No full text
    Adansonia digitata L. is a royal tree that is highly valued in Africa for its medicinal and nutritional properties. The objective of this study was to use its fruit shell extract to develop new, powerful mono and bimetallic nanoparticles (NPs) and biochar (BC) using an eco-friendly approach. Silver (Ag), iron oxide (FeO), the bimetallic Ag-FeO NPs, as well as (BC) were fabricated by A. digitata fruit shell extract through a reduction process and biomass pyrolysis, respectively, and their activity against tomato pathogenic fungi Alternaria sp., Sclerotinia sclerotiorum, Fusarium equiseti, and Fusarium venenatum were detected by agar dilution method. The Ag, FeO, Ag-FeONPs, and BC were characterized using a range of powerful analytical techniques such as ultraviolet–visible (UV–Vis) spectroscopy, scanning electron microscopy (SEM), transmission electron microscopy (TEM), Fourier Transform-Infra Red (FT-IR), dynamic light scatter (DLS), and zeta potential analysis. The fabricated Ag, FeO and Ag-FeO NPs have demonstrated a remarkable level of effectiveness in combating fungal strains. UV–Vis spectra ofAg, FeO, Ag-FeONPs, and BC show broad exhibits peaks at 338, 352, 418, and 480 nm, respectively. The monometallic, bimetallic NPs, and biochar have indicated the presence in various forms mostly in Spherical-shaped. Their size varied from 102.3 to 183.5 nm and the corresponding FTIR spectra suggested that the specific organic functional groups from the plant extract played a significant role in the bio-reduction process. Ag and Ag-FeO NPs exhibited excellent antifungal activity against pathogenic fungi Alternaria sp., S. sclerotiorum, F. equiseti, and F. venenatum. The current study could be a significant achievement in the field of antifungal agents since has the potential to develop new approaches for treating fungal infections

    Ethoxyquin Inhibits the Progression of Murine Ehrlich Ascites Carcinoma through the Inhibition of Autophagy and LDH

    No full text
    Cancer cells exhibit an increased glycolysis rate for ATP generation (the Warburg effect) to sustain an increased proliferation rate. In tumor cells, the oxidation of pyruvate in the Krebs cycle is substituted by lactate production, catalyzed by LDH. In this study, we use ethoxyquin (EQ) as a novel inhibitor to target LDH in murine Ehrlich ascites carcinoma (EAC) and as a combination therapy to improve the therapeutic efficacy of the conventional chemotherapy drug, cisplatin (CIS). We investigated the anti-tumor effect of EQ on EAC-bearing mice and checked whether EQ can sustain the anti-tumor potential of CIS and whether it influences LDH activity. Treatment with EQ had evident anti-tumor effects on EAC as revealed by the remarkable decrease in the expression of the anti-apoptotic gene Bcl-2 and by a significant increase in the expression of apoptotic genes (BAX and caspase-3). EQ also caused a significant decrease in the autophagic activity of EAC cells, as shown by a reduction in the fluorescence intensity of the autophagosome marker. Additionally, EQ restored the altered hematological and biochemical parameters and improved the disrupted hepatic tissues of EAC-bearing mice. Co-administration of EQ and CIS showed the highest anti-tumor effect against EAC. Collectively, our findings propose EQ as a novel inhibitor of LDH in cancer cells and as a combinatory drug to increase the efficacy of cisplatin. Further studies are required to validate this therapeutic strategy in different cancer models and preclinical trials

    Morpho-Physiological and Proteomic Analyses of <i>Eucalyptus camaldulensis</i> as a Bioremediator in Copper-Polluted Soil in Saudi Arabia

    No full text
    The present investigation aimed to assess the impact of copper (Cu) stress on the physiological and proteomic behavior of Eucalyptus camaldulensis. E. camaldulensis is likely a potential phytoremediator in areas vulnerable to Cu contamination, such as the industrial areas of Riyadh. To realize this objective, young seedlings of E. camaldulensis were potted in an open area with soil comprised of clay and sand. Different doses of Cu (30, 50, and 100 &#181;M) were applied to the plants as CuSO4&#183;5H2O for 6 weeks. Plant growth was monitored during the Cu exposure period, and morphological and physiological indicators were measured once a week to determine the growth rates. A proteomics study was also conducted to find out the influence of Cu stress on proteins. Our results showed that growth was negatively affected by Cu treatment, particularly at the highest concentrations. Moreover, using a proteomic analysis showed 26 targets involved in protein expression. Elevated levels of Cu increased the expression of 11 proteins and decreased the expression of 15 proteins. Changes were detected in proteins involved in photosynthesis, translation, transcription, metabolism, and antioxidant enzymes. Our findings provided insights into the molecular mechanisms related to Cu stress, in addition to its influence on the morphological and physiological attributes of E. camaldulensis seedlings. This investigation aimed to characterize the mechanism behind the impact of Cu stress on the plant

    Antibacterial and Cytotoxic Potential of Biosynthesized Silver Nanoparticles by Some Plant Extracts

    No full text
    The provision of nanoparticles using biogenic material as a part of green chemistry is an attractive nanotechnology. The current research aimed to test the antimicrobial and cytotoxic efficacy of silver nanoparticles synthesized by extracts of Phoenix dactylifera, Ferula asafetida, and Acacia nilotica as reductant and stabilizing agents in silver nanoparticle formation. Synthesized nanoparticles were evaluated for their antimicrobial activity against Staphylococcus aureus (Gram-positive) and Pseudomonas aeruginosa and Escherichia coli (Gram-negative) using an agar well diffusion assay. Furthermore, cytotoxic ability was investigated against LoVo cells. The potential phyto-constituents of plant extracts were identified by Fourier-transform infrared spectroscopy (FT-IR) techniques. Field emission scanning electron microscopy (FE-SEM), transmission electron microscope (TEM), and zeta potential analyzed the size and morphology of the biogenic nanoparticles. The current study revealed the ability of the tested plant extract to convert silver ions to silver nanoparticles with an average size that ranged between 67.8 ± 0.3 and 155.7 ± 1.5 nm in diameter. Biogenic AgNPs showed significant antibacterial ability (10 to 32 mm diameter) and anticancer ability against a LoVo cell with IC50 ranged between 35.15–56.73 μg/mL. The innovation of the present study is that the green synthesis of NPs, which is simple and cost effective, provides stable nano-materials and can be an alternative for the large-scale synthesis of silver nanoparticles

    <i>Limoniastrum monopetalum</i>–Mediated Nanoparticles and Biomedicines: In Silico Study and Molecular Prediction of Biomolecules

    No full text
    An in silico approach applying computer-simulated models helps enhance biomedicines by sightseeing the pharmacology of potential therapeutics. Currently, an in silico study combined with in vitro assays investigated the antimicrobial ability of Limoniastrum monopetalum and silver nanoparticles (AgNPs) fabricated by its aid. AgNPs mediated by L. monopetalum were characterized using FTIR, TEM, SEM, and DLS. L. monopetalum metabolites were detected by QTOF–LCMS and assessed using an in silico study for pharmacological properties. The antibacterial ability of an L. monopetalum extract and AgNPs was investigated. PASS Online predictions and the swissADME web server were used for antibacterial activity and potential molecular target metabolites, respectively. Spherical AgNPs with a 68.79 nm average size diameter were obtained. Twelve biomolecules (ferulic acid, trihydroxy-octadecenoic acid, catechin, pinoresinol, gallic acid, myricetin, 6-hydroxyluteolin, 6,7-dihydroxy-5-methoxy 7-O-β-d-glucopyranoside, methyl gallate, isorhamnetin, chlorogenic acid, 2-(3,4-dihydroxyphenyl)-5,7-dihydroxy-4-oxo-4H-chromen-3-yl 6-O-(6-deoxy-β-l-mannopyranosyl)-β-d-glucopyranoside) were identified. The L. monopetalum extract and AgNPs displayed antibacterial effects. The computational study suggested that L. Monopetalum metabolites could hold promising antibacterial activity with minimal toxicity and an acceptable pharmaceutical profile. The in silico approach indicated that metabolites 8 and 12 have the highest antibacterial activity, and swissADME web server results suggested the CA II enzyme as a potential molecular target for both metabolites. Novel therapeutic agents could be discovered using in silico molecular target prediction combined with in vitro studies. Among L. Monopetalum metabolites, metabolite 12 could serve as a starting point for potential antibacterial treatment for several human bacterial infections
    corecore