27 research outputs found

    Automatic PCB Inspection Systems

    Get PDF
    There are more than 50 process steps required to fabricate a printed circuit board (PCB). To ensure quality, human operators simply inspect the work visually against prescribed standards. The decisions made by this labor intensive, and therefore costly, procedure often also involve subjective judgements. Automatic inspection systems remove the subjective aspects and provide fast, quantitative dimensional assessments. Machine vision may answer the manufacturing industry\u27s need to improve product quality and increase productivity. The major limitation of existing inspection systems is that all the algorithms need a special hardware platform to achieve the desired real-time speeds. This makes the systems extremely expensive. Any improvements in speeding up the computation process algorithmically could reduce the cost of these systems drastically. However, they remain a better option than increasingly error prone, and slow manual human inspectio

    Detection of Skin Tumor Boundaries in Color Images

    Get PDF
    A simple and yet effective method for finding the borders of tumors is presented as an initial step towards the diagnosis of skin tumors from their color images. The method makes use of an adaptive color metric from the red, green, and blue planes that contains information for discriminating the tumor from the background. Using this suitable coordinate transformation, the image is segmented. The tumor portion is then extracted from the segmented image and borders are drawn. Experimental results that verify the effectiveness of this approach are give

    Metastases to Both Parotid Glands Six and Twelve Years after Resection of Renal Cell Carcinoma

    Get PDF
    Metastases of renal cell carcinoma (RCC) involving the parotid gland are very rare. We present to our knowledge the first case of a 74-year-old woman with metastases of an RCC which affected both parotid glands six and twelve years following curative therapy

    Epigenetic Regulation of S100A9 and S100A12 Expression in Monocyte-Macrophage System in Hyperglycemic Conditions

    Get PDF
    The number of diabetic patients in Europe and world-wide is growing. Diabetes confers a 2-fold higher risk for vascular disease. Lack of insulin production (Type 1 diabetes, T1D) or lack of insulin responsiveness (Type 2 diabetes, T2D) causes systemic metabolic changes such as hyperglycemia (HG) which contribute to the pathology of diabetes. Monocytes and macrophages are key innate immune cells that control inflammatory reactions associated with diabetic vascular complications. Inflammatory programming of macrophages is regulated and maintained by epigenetic mechanisms, in particular histone modifications. The aim of our study was to identify the epigenetic mechanisms involved in the hyperglycemia-mediated macrophage activation. Using Affymetrix microarray profiling and RT-qPCR we identified that hyperglycemia increased the expression of S100A9 and S100A12 in primary human macrophages. Expression of S100A12 was sustained after glucose levels were normalized. Glucose augmented the response of macrophages to Toll-like receptor (TLR)-ligands Palmatic acid (PA) and Lipopolysaccharide (LPS) i.e., pro-inflammatory stimulation. The abundance of activating histone Histone 3 Lysine 4 methylation marks (H3K4me1, H3K4me3) and general acetylation on histone 3 (AceH3) with the promoters of these genes was analyzed by chromatin immunoprecipitation. Hyperglycemia increased acetylation of histones bound to the promoters of S100A9 and S100A12 in M1 macrophages. In contrast, hyperglycemia caused a reduction in total H3 which correlated with the increased expression of both S100 genes. The inhibition of histone methyltransferases SET domain-containing protein (SET)7/9 and SET and MYND domain-containing protein (SMYD)3 showed that these specifically regulated S100A12 expression. We conclude that hyperglycemia upregulates expression of S100A9, S100A12 via epigenetic regulation and induces an activating histone code on the respective gene promoters in M1 macrophages. Mechanistically, this regulation relies on action of histone methyltransferases SMYD3 and SET7/9. The results define an important role for epigenetic regulation in macrophage mediated inflammation in diabetic conditions

    PCB Inspection Using Image Processing and Wavelet Transform

    No full text

    Trends in automated visual inspection

    No full text

    Tumor-associated macrophages in human breast cancer produce new monocyte attracting and pro-angiogenic factor YKL-39 indicative for increased metastasis after neoadjuvant chemotherapy.

    No full text
    It is undeniably one of the greatest findings in biology that (with some very minor exceptions) every cell in the body possesses the whole genetic information needed to generate a complete individual. Today, this concept has been so thoroughly assimilated that we struggle to still see how surprising this finding actually was: all cellular phenotypes naturally occurring in one person are generated from genetic uniformity, and thus are per definition epigenetic. Transcriptional mechanisms are clearly critical for developing and protecting cell identities, because a mis-expression of few or even single genes can efficiently induce inappropriate cellular programmes. However, how transcriptional activities are molecularly controlled and which of the many known epigenomic features have causal roles remains unclear. Today, clarification of this issue is more pressing than ever because profiling efforts and epigenome-wide association studies (EWAS) continuously provide comprehensive datasets depicting epigenomic differences between tissues and disease states. In this commentary, we propagate the idea of a widespread follow-up use of epigenome editing technology in EWAS studies. This would enable them to address the questions of which features, where in the genome, and which circumstances are essential to shape development and trigger disease states
    corecore