1,076 research outputs found

    Expansion of a Fermi gas interacting with a Bose-Einstein condensate

    Full text link
    We study the expansion of an atomic Fermi gas interacting attractively with a Bose-Einstein condensate. We find that the interspecies interaction affects dramatically both the expansion of the Fermi gas and the spatial distribution of the cloud in trap. We observe indeed a slower evolution of the radial-to-axial aspect ratio which reveals the importance of the mutual attraction between the two samples during the first phase of the expansion. For large atom numbers, we also observe a bimodal momentum distribution of the Fermi gas, which reflects directly the distribution of the mixture in trap. This effect allows us to extract information on the dynamics of the system at the collapse.Comment: 4 pages, 4 figure

    Control of the interaction in a Fermi-Bose mixture

    Full text link
    We control the interspecies interaction in a two-species atomic quantum mixture by tuning the magnetic field at a Feshbach resonance. The mixture is composed by fermionic 40K and bosonic 87Rb. We observe effects of the large attractive and repulsive interaction energy across the resonance, such as collapse or a reduced spatial overlap of the mixture, and we accurately locate the resonance position and width. Understanding and controlling instabilities in this mixture opens the way to a variety of applications, including formation of heteronuclear molecular quantum gases.Comment: 5 Page

    Enhancement of the scissors mode of an expanding Bose-Einstein condensate

    Full text link
    We study the time-evolution of the scissors mode of a Bose-Einstein condensate during the ballistic expansion after release from the magnetic trap. We show that despite the nontrivial character of the superfluid expansion, the sinusoidal behavior of the scissor oscillations is recovered after an asymptotic expansion, with an enhancement of the final amplitude. We investigate this phenomenon with a condensate held in an elongated magnetostatic potential, whose particular shape allows for the excitation of the scissors mode.Comment: RevTeX, 5 figure

    Damping and frequency shift in the oscillations of two colliding Bose-Einstein condensates

    Full text link
    We have investigated the center-of-mass oscillations of a Rb87 Bose-Einstein condensate in an elongated magneto-static trap. We start from a trapped condensate and we transfer part of the atoms to another trapped level, by applying a radio-frequency pulse. The new condensate is produced far from its equilibrium position in the magnetic potential, and periodically collides with the parent condensate. We discuss how both the damping and the frequency shift of the oscillations are affected by the mutual interaction between the two condensates, in a wide range of trapping frequencies. The experimental data are compared with the prediction of a mean-field model.Comment: 5 RevTex pages, 7 eps figure

    Observation of subdiffusion of a disordered interacting system

    Full text link
    We study the transport dynamics of matter-waves in the presence of disorder and nonlinearity. An atomic Bose-Einstein condensate that is localized in a quasiperiodic lattice in the absence of atom-atom interaction shows instead a slow expansion with a subdiffusive behavior when a controlled repulsive interaction is added. The measured features of the subdiffusion are compared to numerical simulations and a heuristic model. The observations confirm the nature of subdiffusion as interaction-assisted hopping between localized states and highlight a role of the spatial correlation of the disorder.Comment: 8 pages, to be published on Physical Review Letter

    Effects of interaction on the diffusion of atomic matter waves in one-dimensional quasi-periodic potentials

    Full text link
    We study the behaviour of an ultracold atomic gas of bosons in a bichromatic lattice, where the weaker lattice is used as a source of disorder. We numerically solve a discretized mean-field equation, which generalizes the one-dimensional Aubry-Andr\`e model for particles in a quasi-periodic potential by including the interaction between atoms. We compare the results for commensurate and incommensurate lattices. We investigate the role of the initial shape of the wavepacket as well as the interplay between two competing effects of the interaction, namely self-trapping and delocalization. Our calculations show that, if the condensate initially occupies a single lattice site, the dynamics of the interacting gas is dominated by self-trapping in a wide range of parameters, even for weak interaction. Conversely, if the diffusion starts from a Gaussian wavepacket, self-trapping is significantly suppressed and the destruction of localization by interaction is more easily observable

    Mean-field analysis of the stability of a K-Rb Fermi-Bose mixture

    Full text link
    We compare the experimental stability diagram of a Fermi-Bose mixture of K-40 and Rb-87 atoms with attractive interaction to the predictions of a mean-field theoretical model. We discuss how this comparison can be used to give a better estimate of the interspecies scattering length, which is currently known from collisional measurements with larger uncertainty.Comment: 5 pages, 4 figure

    Localization in momentum space of ultracold atoms in incommensurate lattices

    Full text link
    We characterize the disorder induced localization in momentum space for ultracold atoms in one-dimensional incommensurate lattices, according to the dual Aubry-Andr\'e model. For low disorder the system is localized in momentum space, and the momentum distribution exhibits time-periodic oscillations of the relative intensity of its components. The behavior of these oscillations is explained by means of a simple three-mode approximation. We predict their frequency and visibility by using typical parameters of feasible experiments. Above the transition the system diffuses in momentum space, and the oscillations vanish when averaged over different realizations, offering a clear signature of the transition
    • …
    corecore