1,076 research outputs found
Expansion of a Fermi gas interacting with a Bose-Einstein condensate
We study the expansion of an atomic Fermi gas interacting attractively with a
Bose-Einstein condensate. We find that the interspecies interaction affects
dramatically both the expansion of the Fermi gas and the spatial distribution
of the cloud in trap. We observe indeed a slower evolution of the
radial-to-axial aspect ratio which reveals the importance of the mutual
attraction between the two samples during the first phase of the expansion. For
large atom numbers, we also observe a bimodal momentum distribution of the
Fermi gas, which reflects directly the distribution of the mixture in trap.
This effect allows us to extract information on the dynamics of the system at
the collapse.Comment: 4 pages, 4 figure
Control of the interaction in a Fermi-Bose mixture
We control the interspecies interaction in a two-species atomic quantum
mixture by tuning the magnetic field at a Feshbach resonance. The mixture is
composed by fermionic 40K and bosonic 87Rb. We observe effects of the large
attractive and repulsive interaction energy across the resonance, such as
collapse or a reduced spatial overlap of the mixture, and we accurately locate
the resonance position and width. Understanding and controlling instabilities
in this mixture opens the way to a variety of applications, including formation
of heteronuclear molecular quantum gases.Comment: 5 Page
Enhancement of the scissors mode of an expanding Bose-Einstein condensate
We study the time-evolution of the scissors mode of a Bose-Einstein
condensate during the ballistic expansion after release from the magnetic trap.
We show that despite the nontrivial character of the superfluid expansion, the
sinusoidal behavior of the scissor oscillations is recovered after an
asymptotic expansion, with an enhancement of the final amplitude. We
investigate this phenomenon with a condensate held in an elongated
magnetostatic potential, whose particular shape allows for the excitation of
the scissors mode.Comment: RevTeX, 5 figure
Damping and frequency shift in the oscillations of two colliding Bose-Einstein condensates
We have investigated the center-of-mass oscillations of a Rb87 Bose-Einstein
condensate in an elongated magneto-static trap. We start from a trapped
condensate and we transfer part of the atoms to another trapped level, by
applying a radio-frequency pulse. The new condensate is produced far from its
equilibrium position in the magnetic potential, and periodically collides with
the parent condensate. We discuss how both the damping and the frequency shift
of the oscillations are affected by the mutual interaction between the two
condensates, in a wide range of trapping frequencies. The experimental data are
compared with the prediction of a mean-field model.Comment: 5 RevTex pages, 7 eps figure
Observation of subdiffusion of a disordered interacting system
We study the transport dynamics of matter-waves in the presence of disorder
and nonlinearity. An atomic Bose-Einstein condensate that is localized in a
quasiperiodic lattice in the absence of atom-atom interaction shows instead a
slow expansion with a subdiffusive behavior when a controlled repulsive
interaction is added. The measured features of the subdiffusion are compared to
numerical simulations and a heuristic model. The observations confirm the
nature of subdiffusion as interaction-assisted hopping between localized states
and highlight a role of the spatial correlation of the disorder.Comment: 8 pages, to be published on Physical Review Letter
Effects of interaction on the diffusion of atomic matter waves in one-dimensional quasi-periodic potentials
We study the behaviour of an ultracold atomic gas of bosons in a bichromatic
lattice, where the weaker lattice is used as a source of disorder. We
numerically solve a discretized mean-field equation, which generalizes the
one-dimensional Aubry-Andr\`e model for particles in a quasi-periodic potential
by including the interaction between atoms. We compare the results for
commensurate and incommensurate lattices. We investigate the role of the
initial shape of the wavepacket as well as the interplay between two competing
effects of the interaction, namely self-trapping and delocalization. Our
calculations show that, if the condensate initially occupies a single lattice
site, the dynamics of the interacting gas is dominated by self-trapping in a
wide range of parameters, even for weak interaction. Conversely, if the
diffusion starts from a Gaussian wavepacket, self-trapping is significantly
suppressed and the destruction of localization by interaction is more easily
observable
Mean-field analysis of the stability of a K-Rb Fermi-Bose mixture
We compare the experimental stability diagram of a Fermi-Bose mixture of K-40
and Rb-87 atoms with attractive interaction to the predictions of a mean-field
theoretical model. We discuss how this comparison can be used to give a better
estimate of the interspecies scattering length, which is currently known from
collisional measurements with larger uncertainty.Comment: 5 pages, 4 figure
Localization in momentum space of ultracold atoms in incommensurate lattices
We characterize the disorder induced localization in momentum space for
ultracold atoms in one-dimensional incommensurate lattices, according to the
dual Aubry-Andr\'e model. For low disorder the system is localized in momentum
space, and the momentum distribution exhibits time-periodic oscillations of the
relative intensity of its components. The behavior of these oscillations is
explained by means of a simple three-mode approximation. We predict their
frequency and visibility by using typical parameters of feasible experiments.
Above the transition the system diffuses in momentum space, and the
oscillations vanish when averaged over different realizations, offering a clear
signature of the transition
- …