9 research outputs found
Recommended from our members
Effect of fiber crosslinking on collagen-fiber reinforced collagen-chondroitin-6-sulfate materials for regenerating load-bearing soft tissues.
Porous collagen-glycosaminoglycan structures are bioactive and exhibit a pore architecture favorable for both cellular infiltration and attachment; however, their inferior mechanical properties limit use, particularly in load-bearing situations. Reinforcement with collagen fibers may be a feasible route for enhancing the mechanical characteristics of these materials, providing potential for composites used for the repair and regeneration of soft tissue such as tendon, ligaments, and cartilage. Therefore, this study investigates the reinforcement of collagen-chondroitin-6-sulfate (C6S) porous structures with bundles of extruded, reconstituted type I collagen fibers. Fiber bundles were produced through extrusion and then, where applicable, crosslinked using a solution of 1-ethyl-3-(3-dimethylaminopropyl) carbodiimide/N-hydroxysuccinimide. Fibers were then submerged in the collagen-C6S matrix slurry before being lyophilized. A second 1-ethyl-3-(3-dimethylaminopropyl) carbodiimide and N-hydroxysuccinimide crosslinking process was then applied to the composite material before a secondary lyophilization cycle. Where bundles had been previously crosslinked, composites withstood a load of approximately 60 N before failure, the reinforcing fibers remained dense and a favorable matrix pore structure resulted, with good interaction between fiber and matrix. Fibers that had not been crosslinked before lyophilization showed significant internal porosity and a channel existed between them and the matrix. Mechanical properties were significantly reduced, but the additional porosity could prove favorable for cell migration and has potential for directing aligned tissue growth.This is the pre-peer reviewed version of the following article: J.H. Shepherd, S. Ghose, A. Moavenian, S.J. Kew, S.M. Best and R.E. Cameron. “Effect of fibre Cross-linking on Collagen-fibre reinforced Collagen-chondroitin-6-sulphate materials for regenerating load-bearing soft tissues”. Journal of Biomedical Materials Research: Part A, 2013;101(1):176-84., which has been published in final form at http://dx.doi.org/10.1002/jbm.a.34317
Optimization of the high-frequency torsional vibration of vehicle driveline systems using genetic algorithms
Vehicle drivelines with manual transmissions are exposed to different dynamic engine torques under driving conditions. Engine torque can dramatically vary with throttle demand from coast to drive condition and, conversely, with throttle release from drive to coast. Abrupt application or release of throttle in slow moving traffic or rapid engagement of the clutch can be followed by an audible response, referred to in industry as the clonk noise. This paper presents a complete dynamic model of a vehicle driveline for the optimization of high-frequency torsional vibration by the distributed-lumped (hybrid) modelling technique (DLMT). The model used is first validated against experimental tests. Parameter sensitivity studies have been carried out using the model to identify the important components affecting clonk. Three key parameters have been chosen from the parameter study. To optimize these key factors, genetic algorithms (GAs) have been used in this multi-parameter optimization problem. The GAs show significant reduction in the driveline noise, vibration and harshness (NVH)
Optimization of the high-frequency torsional vibration of vehicle driveline systems using genetic algorithms
This article was published in the Journal, Proceedings of the Institution of Mechanical Engineers, Part K: Journal of Multi-body Dynamics [© IMECHE]. The definitive version is available at: http://www.pepublishing.com/Vehicle drivelines with manual transmissions are exposed to different dynamic engine torques under driving conditions. Engine torque can dramatically vary with throttle demand from coast to drive condition and, conversely, with throttle release from drive to coast. Abrupt application or release of throttle in slow moving traffic or rapid engagement of the clutch can be followed by an audible response, referred to in industry as the clonk noise. This paper presents a complete dynamic model of a vehicle driveline for the optimization of high-frequency torsional vibration by the distributed-lumped (hybrid) modelling technique (DLMT). The model used is first validated against experimental tests. Parameter sensitivity studies have been carried out using the model to identify the important components affecting clonk. Three key parameters have been chosen from the parameter study. To optimize these key factors, genetic algorithms (GAs) have been used in this multi-parameter optimization problem. The GAs show significant reduction in the driveline noise, vibration and harshness (NVH)