2,130 research outputs found

    GR models of the X-ray spectral variability of MCG--6-30-15

    Full text link
    We study in detail the GR models of the X-ray spectral variability for various geometries of the X-ray source and with various relativistic effects being the dominant cause of spectral variability. The predicted properties are compared with the Suzaku observational data of the Seyfert 1 galaxy MCG--6-30-15. The data disfavor models with the X-ray source (1) moving vertically on the symmetry axis or (2) corotating with the disc and changing height not far above the disc surface. The most likely explanation for the observed variability is given by the model involving the X-ray source located at a very small, varying distance from a rapidly rotating black hole. This model predicts some enhanced variations in the red wing of the Fe line, which are not seen in the Suzaku observations. However, the enhanced variability of the red wing, while ruled out by the Suzaku data, is consistent with an excess RMS variability, between 5 and 6 keV, reported for some previous ASCA and XMM observations. We speculate that the presence or lack of such a feature is related to the change of the ionization state of the innermost part of the disc, however, investigation of such effects is currently not possible in our model (where a neutral disc is assumed). If the model, completed by description of ionization effects, proves to be fully consistent with the observational data, it will provide a strong indication that the central black hole in MCG--6-30-15 rotates rapidly, supporting similar conclusions derived from the Fe line profile.Comment: 15 pages, accepted for publication in A&

    On the light-bending model of X-ray variability of MCG-6-30-15

    Full text link
    We apply the light bending model of X-ray variability to Suzaku data of the Seyfert 1 galaxy MCG-6-30-15. We analyze the energy dependence of the root mean square (rms) variability, and discuss conditions necessary for the model to explain the characteristic decrease of the source variability around 5-8 keV. A model, where the X-ray source moves radially rather than vertically close to the disk surface, can indeed reproduce the reduced variability near the energy of the Fe Kalpha line, although the formal fit quality is poor. The model then predicts the energy spectra, which can be compared to observational data. The spectra are strongly reflection dominated, and do not provide a good fit to Suzaku spectral data of the source. The inconsistency of this result with some previous claims can be traced to our using data in a broader energy band, where effects of warm absorber in the spectrum cannot be neglected.Comment: 6 pages, PASJ, accepte

    Peierls instability, periodic Bose-Einstein condensates and density waves in quasi-one-dimensional boson-fermion mixtures of atomic gases

    Full text link
    We study the quasi-one-dimensional (Q1D) spin-polarized bose-fermi mixture of atomic gases at zero temperature. Bosonic excitation spectra are calculated in random phase approximation on the ground state with the uniform BEC, and the Peierls instabilities are shown to appear in bosonic collective excitation modes with wave-number 2kF2k_F by the coupling between the Bogoliubov-phonon mode of bosonic atoms and the fermion particle-hole excitations. The ground-state properties are calculated in the variational method, and, corresponding to the Peierls instability, the state with a periodic BEC and fermionic density waves with the period π/kF\pi/k_F are shown to have a lower energy than the uniform one. We also briefly discuss the Q1D system confined in a harmonic oscillator (HO) potential and derive the Peierls instability condition for it.Comment: 9 pages, 3figure

    Dynamical properties of dipolar Fermi gases

    Full text link
    We investigate dynamical properties of a one-component Fermi gas with dipole-dipole interaction between particles. Using a variational function based on the Thomas-Fermi density distribution in phase space representation, the total energy is described by a function of deformation parameters in both real and momentum space. Various thermodynamic quantities of a uniform dipolar Fermi gas are derived, and then instability of this system is discussed. For a trapped dipolar Fermi gas, the collective oscillation frequencies are derived with the energy-weighted sum rule method. The frequencies for the monopole and quadrupole modes are calculated, and softening against collapse is shown as the dipolar strength approaches the critical value. Finally, we investigate the effects of the dipolar interaction on the expansion dynamics of the Fermi gas and show how the dipolar effects manifest in an expanded cloud.Comment: 14 pages, 8 figures, submitted to New J. Phy

    Fluctuations in the formation time of ultracold dimers from fermionic atoms

    Full text link
    We investigate the temporal fluctuations characteristic of the formation of molecular dimers from ultracold fermionic atoms via Raman photoassociation. The quantum fluctuations inherent to the initial atomic state result in large fluctuations in the passage time from atoms to molecules. Assuming degeneracy of kinetic energies of atoms in the strong coupling limit we find that a heuristic classical stochastic model yields qualitative agreement with the full quantum treatment in the initial stages of the dynamics. We also show that in contrast to the association of atoms into dimers, the reverse process of dissociation from a condensate of bosonic dimers exhibits little passage time fluctuations. Finally we explore effects due to the non-degeneracy of atomic kinetic energies.Comment: 7 pages, 6 figure

    Random-phase approximation study of collective excitations in the Bose-Fermi mixed condensate of alkali-metal gases

    Full text link
    We perform Random Phase Approximation (RPA) study of collective excitations in the bose-fermi mixed degenerate gas of Alkali-metal atoms at T=0. The calculation is done by diagonalization in a model space composed of particle-hole type excitations from the ground state, the latter being obtained from the coupled Gross-Pitaevskii and Thomas-Fermi equations. We investigate strength distributions for different combinations of bose and fermi multipole (LL) operators with L=0,1,2,3L=0,1,2,3. Transition densities and dynamical structure factors are calculated for collective excitations. Comparison with the sum rule prediction for the collective frequency is given. Time dependent behavior of the system after an external impulse is studied.Comment: 28 pages, 13 figures, submitted to Phys. Rev.
    • …
    corecore