8 research outputs found

    A versatile reactor for continuous monitoring of biofilm properties in laboratory and industrial conditions

    Get PDF
    Aims: The understanding of the dynamics of surface microbial colonization with concomitant monitoring of biofilm formation requires the development of biofilm reactors that enable direct and real-time evaluation under different hydrodynamic conditions. Methods and Results: This work proposes and discusses a simple flow cell reactor that provides a means to monitoring biofilm growth by periodical removing biofilm-attached slides for off-line, both non-destructive and destructive biofilm analyses. This is managed without the stoppage of the flow, thus reducing the contamination and the disturbance of the biofilm development. With this flow cell, biofilm growth and respiratory activity can be easily followed, either in well-defined laboratory conditions or in an industrial environment. Conclusions, Significance and Impact of the Study: The reproducible and typical biofilm development curves obtained, validated this flow cell and confirmed its potential for different biofilm-related studies, which can include biocidal treatment.Instituto de Biotecnologia e Química Fina(IBQF)

    Constrained Multisine Inputs for Plant-Friendly Identification of Chemical Processes

    No full text
    This paperc#"M'L=;" the use of cons#O ained minimumc#"=; fac#;; multisine signals as inputs for plant-friendly identific#M;=L testing ofc hemic#2 pro systems

    Evolution of genes and genomes on the Drosophila phylogeny

    No full text
    Comparative analysis of multiple genomes in a phylogenetic framework dramatically improves the precision and sensitivity of evolutionary inference, producing more robust results than single-genome analyses can provide. The genomes of 12 Drosophila species, ten of which are presented here for the first time (sechellia, simulans, yakuba, erecta, ananassae, persimilis, willistoni, mojavensis, virilis and grimshawi), illustrate how rates and patterns of sequence divergence across taxa can illuminate evolutionary processes on a genomic scale. These genome sequences augment the formidable genetic tools that have made Drosophila melanogaster a pre-eminent model for animal genetics, and will further catalyse fundamental research on mechanisms of development, cell biology, genetics, disease, neurobiology, behaviour, physiology and evolution. Despite remarkable similarities among these Drosophila species, we identified many putatively non-neutral changes in protein-coding genes, non-coding RNA genes, and cis-regulatory regions. These may prove to underlie differences in the ecology and behaviour of these diverse species
    corecore