5 research outputs found
Enzymatic control of anhydrobiosis-related accumulation of trehalose in the sleeping chironomid, Polypedilum vanderplanki
Larvae of an anhydrobiotic insect, Polypedilum vanderplanki, accumulate very large amounts of trehalose as a compatible solute on desiccation, but the molecular mechanisms underlying this accumulation are unclear. We therefore isolated the genes coding for trehalose metabolism enzymes, i.e. trehalose-6-phosphate synthase (TPS) and trehalose-6-phosphate phosphatase (TPP) for the synthesis step, and trehalase (TREH) for the degradation step. Although computational prediction indicated that the alternative splicing variants (PvTpsĪ±/Ī²) obtained encoded probable functional motifs consisting of a typical consensus domain of TPS and a conserved sequence of TPP, PvTpsĪ± did not exert activity as TPP, but only as TPS. Instead, a distinct gene (PvTpp) obtained expressed TPP activity. Previous reports have suggested that insect TPS is, exceptionally, a bifunctional enzyme governing both TPS and TPP. In this article, we propose that TPS and TPP activities in insects can be attributed to discrete genes. The translated product of the TREH ortholog (PvTreh) certainly degraded trehalose to glucose. Trehalose was synthesized abundantly, consistent with increased activities of TPS and TPP and suppressed TREH activity. These results show that trehalose accumulation observed during anhydrobiosis induction in desiccating larvae can be attributed to the activation of the trehalose synthetic pathway and to the depression of trehalose hydrolysis
Identification of Anhydrobiosis-related Genes from an Expressed Sequence Tag Database in the Cryptobiotic Midge Polypedilum vanderplanki (Diptera; Chironomidae)*
Some organisms are able to survive the loss of almost all their body water content, entering a latent state known as anhydrobiosis. The sleeping chironomid (Polypedilum vanderplanki) lives in the semi-arid regions of Africa, and its larvae can survive desiccation in an anhydrobiotic form during the dry season. To unveil the molecular mechanisms of this resistance to desiccation, an anhydrobiosis-related Expressed Sequence Tag (EST) database was obtained from the sequences of three cDNA libraries constructed from P. vanderplanki larvae after 0, 12, and 36 h of desiccation. The database contained 15,056 ESTs distributed into 4,807 UniGene clusters. ESTs were classified according to gene ontology categories, and putative expression patterns were deduced for all clusters on the basis of the number of clones in each library; expression patterns were confirmed by real-time PCR for selected genes. Among up-regulated genes, antioxidants, late embryogenesis abundant (LEA) proteins, and heat shock proteins (Hsps) were identified as important groups for anhydrobiosis. Genes related to trehalose metabolism and various transporters were also strongly induced by desiccation. Those results suggest that the oxidative stress response plays a central role in successful anhydrobiosis. Similarly, protein denaturation and aggregation may be prevented by marked up-regulation of Hsps and the anhydrobiosis-specific LEA proteins. A third major feature is the predicted increase in trehalose synthesis and in the expression of various transporter proteins allowing the distribution of trehalose and other solutes to all tissues