204 research outputs found

    Modelling the Non-equilibrium Electric Double Layer at Oil-pressboard Interface of High Voltage Transformers

    No full text
    In large oil-filled power transformers, cellulose-based pressboard and paper are used throughout for electrical insulation. Microscopic views have shown that pressboard insulation is a fibrous and porous structure with non-homogeneous surface. It has been recognised that the pressboard structure is more porous towards the edge [1]. The pores within the pressboard allow oil absorption during impregnation process and provide paths for oil to penetrate until saturation is reached. The ratio of fibre and oil changes as the material structure changes from a medium of bulk oil-pressboard composite toward the bulk oil medium. The porosity of pressboard can also result in impurities within the oil being drawn into the pressboard. It has also been recognised that physicochemical process of a liquid in contact with solid wall leads to the formation of electric double layer (EDL) in the liquid region [2, 3]. The material properties and geometry of pressboard thus lead to a complex oil-pressboard interface. A 2-D model of oil-pressboard interface has been constructed using Comsol Multiphysics Finite Element Analysis software and this is shown in Figure 1. The mathematical model considers the dissociation of a generic impurity in the oil into positive and negative ions and considers the role of the porous and non-homogeneous wall of pressboard in the formation of the EDL. The pressboard, which is represented by different arrays of fibre, promotes preferential adsorption and desorption processes between ions in the oil and unoccupied fibre surfaces of oil impregnated pressboard. The model studies the non-equilibrium charge density profile in the EDL at the oil-pressboard interface when the oil is in the stationary condition

    Empirically inspired simulated electro-mechanical model of the rat mystacial follicle-sinus complex

    Get PDF
    In whiskered animals, activity is evoked in the primary sensory afferent cells (trigeminal nerve) by mechanical stimulation of the whiskers. In some cell populations this activity is correlated well with continuous stimulus parameters such as whisker deflection magnitude, but in others it is observed to represent events such as whisker-stimulator contact or detachment. The transduction process is mediated by the mechanics of the whisker shaft and follicle-sinus complex (FSC), and the mechanics and electro-chemistry of mechanoreceptors within the FSC. An understanding of this transduction process and the nature of the primary neural codes generated is crucial for understanding more central sensory processing in the thalamus and cortex. However, the details of the peripheral processing are currently poorly understood. To overcome this deficiency in our knowledge, we constructed a simulated electro-mechanical model of the whisker-FSC-mechanoreceptor system in the rat and tested it against a variety of data drawn from the literature. The agreement was good enough to suggest that the model captures many of the key features of the peripheral whisker system in the rat

    Storage capacity of a constructive learning algorithm

    Full text link
    Upper and lower bounds for the typical storage capacity of a constructive algorithm, the Tilinglike Learning Algorithm for the Parity Machine [M. Biehl and M. Opper, Phys. Rev. A {\bf 44} 6888 (1991)], are determined in the asymptotic limit of large training set sizes. The properties of a perceptron with threshold, learning a training set of patterns having a biased distribution of targets, needed as an intermediate step in the capacity calculation, are determined analytically. The lower bound for the capacity, determined with a cavity method, is proportional to the number of hidden units. The upper bound, obtained with the hypothesis of replica symmetry, is close to the one predicted by Mitchinson and Durbin [Biol. Cyber. {\bf 60} 345 (1989)].Comment: 13 pages, 1 figur

    Microscopy techniques for determining water-cement (w/c) ratio in hardened concrete: A round-robin assessment

    Get PDF
    Water to cement (w/c) ratio is usually the most important parameter specified in concrete design and is sometimes the subject of dispute when a shortfall in concrete strength or durability is an issue. However, determination of w/c ratio in hardened concrete by testing is very difficult once the concrete has set. This paper presents the results from an inter-laboratory round-robin study organised by the Applied Petrography Group to evaluate and compare microscopy methods for measuring w/c ratio in hardened concrete. Five concrete prisms with w/c ratios ranging from 0.35 to 0.55, but otherwise identical in mix design were prepared independently and distributed to 11 participating petrographic laboratories across Europe. Participants used a range of methods routine to their laboratory and these are broadly divided into visual assessment, measurement of fluorescent intensity and quantitative backscattered electron microscopy. Some participants determined w/c ratio using more than one method or operator. Consequently, 100 individual w/c ratio determinations were collected, representing the largest study of its type ever undertaken. The majority (81%) of the results are accurate to within ± 0.1 of the target mix w/c ratios, 58% come to within ± 0.05 and 37% are within ± 0.025. The study shows that microscopy-based methods are more accurate and reliable compared to the BS 1881-124 physicochemical method for determining w/c ratio. The practical significance, potential sources of errors and limitations are discussed with the view to inform future applications

    Whisker Movements Reveal Spatial Attention: A Unified Computational Model of Active Sensing Control in the Rat

    Get PDF
    Spatial attention is most often investigated in the visual modality through measurement of eye movements, with primates, including humans, a widely-studied model. Its study in laboratory rodents, such as mice and rats, requires different techniques, owing to the lack of a visual fovea and the particular ethological relevance of orienting movements of the snout and the whiskers in these animals. In recent years, several reliable relationships have been observed between environmental and behavioural variables and movements of the whiskers, but the function of these responses, as well as how they integrate, remains unclear. Here, we propose a unifying abstract model of whisker movement control that has as its key variable the region of space that is the animal's current focus of attention, and demonstrate, using computer-simulated behavioral experiments, that the model is consistent with a broad range of experimental observations. A core hypothesis is that the rat explicitly decodes the location in space of whisker contacts and that this representation is used to regulate whisker drive signals. This proposition stands in contrast to earlier proposals that the modulation of whisker movement during exploration is mediated primarily by reflex loops. We go on to argue that the superior colliculus is a candidate neural substrate for the siting of a head-centred map guiding whisker movement, in analogy to current models of visual attention. The proposed model has the potential to offer a more complete understanding of whisker control as well as to highlight the potential of the rodent and its whiskers as a tool for the study of mammalian attention

    You made him be alive: Children’s perceptions of animacy in a humanoid robot

    Get PDF
    Social robots are becoming more sophisticated; in many cases they offer complex, autonomous interactions, responsive behaviors, and biomimetic appearances. These features may have significant impact on how people perceive and engage with robots; young children may be particularly influenced due to their developing ideas of agency. Young children are considered to hold naive beliefs of animacy and a tendency to mis-categorise moving objects as being alive but, with development, children can demonstrate a biological understanding of animacy. We experimentally explore the impact of children’s age and a humanoid’s movement on children’s perceptions of its animacy. Our humanoid’s behavior varied in apparent autonomy, from motionless, to manually operated, to covertly operated. Across conditions, younger children rated the robot as being significantly more person-like than older children did. We further found an interaction effect: younger children classified the robot as significantly more machine-like if they observed direct operation in contrast observing the motionless or apparently autonomous robot. Our findings replicate field results, supporting the modal model of the developmental trajectory for children’s understanding of animacy. We outline a program of research to both deepen the theoretical understanding of children’s animacy beliefs and develop robotic characters appropriate across key stages of child development

    Environmental Systems and Local Actors: Decentralizing Environmental Policy in Uganda

    Get PDF
    In Uganda, environmental and natural resource management is decentralized and has been the responsibility of local districts since 1996. This environmental management arrangement was part of a broader decentralization process and was intended to increase local ownership and improve environmental policy; however, its implementation has encountered several major challenges over the last decade. This article reviews some of the key structural problems facing decentralized environmental policy in this central African country and examines these issues within the wider framework of political decentralization. Tensions have arisen between technical staff and politicians, between various levels of governance, and between environmental and other policy domains. This review offers a critical reflection on the perspectives and limitations of decentralized environmental governance in Uganda. Our conclusions focus on the need to balance administrative staff and local politicians, the mainstreaming of local environmental policy, and the role of international donors

    Neural Computation via Neural Geometry: A Place Code for Inter-whisker Timing in the Barrel Cortex?

    Get PDF
    The place theory proposed by Jeffress (1948) is still the dominant model of how the brain represents the movement of sensory stimuli between sensory receptors. According to the place theory, delays in signalling between neurons, dependent on the distances between them, compensate for time differences in the stimulation of sensory receptors. Hence the location of neurons, activated by the coincident arrival of multiple signals, reports the stimulus movement velocity. Despite its generality, most evidence for the place theory has been provided by studies of the auditory system of auditory specialists like the barn owl, but in the study of mammalian auditory systems the evidence is inconclusive. We ask to what extent the somatosensory systems of tactile specialists like rats and mice use distance dependent delays between neurons to compute the motion of tactile stimuli between the facial whiskers (or ‘vibrissae’). We present a model in which synaptic inputs evoked by whisker deflections arrive at neurons in layer 2/3 (L2/3) somatosensory ‘barrel’ cortex at different times. The timing of synaptic inputs to each neuron depends on its location relative to sources of input in layer 4 (L4) that represent stimulation of each whisker. Constrained by the geometry and timing of projections from L4 to L2/3, the model can account for a range of experimentally measured responses to two-whisker stimuli. Consistent with that data, responses of model neurons located between the barrels to paired stimulation of two whiskers are greater than the sum of the responses to either whisker input alone. The model predicts that for neurons located closer to either barrel these supralinear responses are tuned for longer inter-whisker stimulation intervals, yielding a topographic map for the inter-whisker deflection interval across the surface of L2/3. This map constitutes a neural place code for the relative timing of sensory stimuli

    Catalytic Intermolecular Hetero-Dehydro-Diels–Alder Cycloadditions: Regio- and Diasteroselective Synthesis of 5,6-Dihydropyridin-2-ones

    Get PDF
    A novel catalyzed intermolecular heterodehydro-Diels–Alder reaction between push–pull 1,3-dien-5-ynes and aldimines or silylaldimines is reported. The sequence is promoted both by gold(I) or silver(I) catalysts and leads to the diastereo- and regioselective formation of 5,6-dihydropyridin-2-onesMICINN (Spain) (grants CTQ2009-09949, CTQ2010-16790, PTA2008-1524-P contract to J.M.F.-G. and Ramon y Cajal postdoctoral contract to M.A.F.-R.) and FICYT (project IB08-088)This document is the Accepted Manuscript version of a Published Work that appeared in final form in Organic letters, copyright © American Chemical Society after peer review and technical editing by the publisher. To access the final edited and published work see http://pubs.acs.org/page/policy/articlesonrequest/index.htm

    From Model Specification to Simulation of Biologically Constrained Networks of Spiking Neurons.

    Get PDF
    A declarative extensible markup language (SpineML) for describing the dynamics, network and experiments of large-scale spiking neural network simulations is described which builds upon the NineML standard. It utilises a level of abstraction which targets point neuron representation but addresses the limitations of existing tools by allowing arbitrary dynamics to be expressed. The use of XML promotes model sharing, is human readable and allows collaborative working. The syntax uses a high-level self explanatory format which allows straight forward code generation or translation of a model description to a native simulator format. This paper demonstrates the use of code generation in order to translate, simulate and reproduce the results of a benchmark model across a range of simulators. The flexibility of the SpineML syntax is highlighted by reproducing a pre-existing, biologically constrained model of a neural microcircuit (the striatum). The SpineML code is open source and is available at http://bimpa.group.shef.ac.uk/SpineML
    corecore