770 research outputs found

    Sub-Nyquist Channel Estimation over IEEE 802.11ad Link

    Full text link
    Nowadays, millimeter-wave communication centered at the 60 GHz radio frequency band is increasingly the preferred technology for near-field communication since it provides transmission bandwidth that is several GHz wide. The IEEE 802.11ad standard has been developed for commercial wireless local area networks in the 60 GHz transmission environment. Receivers designed to process IEEE 802.11ad waveforms employ very high rate analog-to-digital converters, and therefore, reducing the receiver sampling rate can be useful. In this work, we study the problem of low-rate channel estimation over the IEEE 802.11ad 60 GHz communication link by harnessing sparsity in the channel impulse response. In particular, we focus on single carrier modulation and exploit the special structure of the 802.11ad waveform embedded in the channel estimation field of its single carrier physical layer frame. We examine various sub-Nyquist sampling methods for this problem and recover the channel using compressed sensing techniques. Our numerical experiments show feasibility of our procedures up to one-seventh of the Nyquist rates with minimal performance deterioration.Comment: 5 pages, 5 figures, SampTA 2017 conferenc

    Frequency diversity wideband digital receiver and signal processor for solid-state dual-polarimetric weather radars

    Get PDF
    2012 Summer.Includes bibliographical references.The recent spate in the use of solid-state transmitters for weather radar systems has unexceptionably revolutionized the research in meteorology. The solid-state transmitters allow transmission of low peak powers without losing the radar range resolution by allowing the use of pulse compression waveforms. In this research, a novel frequency-diversity wideband waveform is proposed and realized to extenuate the low sensitivity of solid-state radars and mitigate the blind range problem tied with the longer pulse compression waveforms. The latest developments in the computing landscape have permitted the design of wideband digital receivers which can process this novel waveform on Field Programmable Gate Array (FPGA) chips. In terms of signal processing, wideband systems are generally characterized by the fact that the bandwidth of the signal of interest is comparable to the sampled bandwidth; that is, a band of frequencies must be selected and filtered out from a comparable spectral window in which the signal might occur. The development of such a wideband digital receiver opens a window for exciting research opportunities for improved estimation of precipitation measurements for higher frequency systems such as X, Ku and Ka bands, satellite-borne radars and other solid-state ground-based radars. This research describes various unique challenges associated with the design of a multi-channel wideband receiver. The receiver consists of twelve channels which simultaneously downconvert and filter the digitized intermediate-frequency (IF) signal for radar data processing. The product processing for the multi-channel digital receiver mandates a software and network architecture which provides for generating and archiving a single meteorological product profile culled from multi-pulse profiles at an increased data date. The multi-channel digital receiver also continuously samples the transmit pulse for calibration of radar receiver gain and transmit power. The multi-channel digital receiver has been successfully deployed as a key component in the recently developed National Aeronautical and Space Administration (NASA) Global Precipitation Measurement (GPM) Dual-Frequency Dual-Polarization Doppler Radar (D3R). The D3R is the principal ground validation instrument for the precipitation measurements of the Dual Precipitation Radar (DPR) onboard the GPM Core Observatory satellite scheduled for launch in 2014. The D3R system employs two broadly separated frequencies at Ku- and Ka-bands that together make measurements for precipitation types which need higher sensitivity such as light rain, drizzle and snow. This research describes unique design space to configure the digital receiver for D3R at several processing levels. At length, this research presents analysis and results obtained by employing the multi-carrier waveforms for D3R during the 2012 GPM Cold-Season Precipitation Experiment (GCPEx) campaign in Canada

    Compressed Sensing Applied to Weather Radar

    Full text link
    We propose an innovative meteorological radar, which uses reduced number of spatiotemporal samples without compromising the accuracy of target information. Our approach extends recent research on compressed sensing (CS) for radar remote sensing of hard point scatterers to volumetric targets. The previously published CS-based radar techniques are not applicable for sampling weather since the precipitation echoes lack sparsity in both range-time and Doppler domains. We propose an alternative approach by adopting the latest advances in matrix completion algorithms to demonstrate the sparse sensing of weather echoes. We use Iowa X-band Polarimetric (XPOL) radar data to test and illustrate our algorithms.Comment: 4 pages, 5 figrue

    Information Geometric Approach to Bayesian Lower Error Bounds

    Full text link
    Information geometry describes a framework where probability densities can be viewed as differential geometry structures. This approach has shown that the geometry in the space of probability distributions that are parameterized by their covariance matrix is linked to the fundamentals concepts of estimation theory. In particular, prior work proposes a Riemannian metric - the distance between the parameterized probability distributions - that is equivalent to the Fisher Information Matrix, and helpful in obtaining the deterministic Cram\'{e}r-Rao lower bound (CRLB). Recent work in this framework has led to establishing links with several practical applications. However, classical CRLB is useful only for unbiased estimators and inaccurately predicts the mean square error in low signal-to-noise (SNR) scenarios. In this paper, we propose a general Riemannian metric that, at once, is used to obtain both Bayesian CRLB and deterministic CRLB along with their vector parameter extensions. We also extend our results to the Barankin bound, thereby enhancing their applicability to low SNR situations.Comment: 5 page

    Super-resolution Line Spectrum Estimation with Block Priors

    Full text link
    We address the problem of super-resolution line spectrum estimation of an undersampled signal with block prior information. The component frequencies of the signal are assumed to take arbitrary continuous values in known frequency blocks. We formulate a general semidefinite program to recover these continuous-valued frequencies using theories of positive trigonometric polynomials. The proposed semidefinite program achieves super-resolution frequency recovery by taking advantage of known structures of frequency blocks. Numerical experiments show great performance enhancements using our method.Comment: 7 pages, double colum
    • …
    corecore