3 research outputs found
Modality of tumor endothelial VEGFR2 silencing-mediated improvement in intratumoral distribution of lipid nanoparticles
The vascular endothelial growth factor (VEGF)-mediated enhancement in vascular permeability is considered to be a major factor in tumor-targeting delivery via the enhanced permeability and retention (EPR) effect. We previously reported that the silencing of the endothelial VEGF receptor (VEGFR2) by a liposomal siRNA system (RGD-MEND) resulted in an enhanced intratumoral distribution of polyethylene glycol (PEG)-modified liposomes (LPs) in a renal cell carcinoma, a type of hypervascularized cancer, although the inhibition of VEGF signaling would be expected to decrease the permeability of the tumor vasculature. We herein report that the enhancement in the intratumoral distribution of LPs by VEGFR2 inhibition was dependent on the vascular type of the tumor (stroma vessel type; SV and tumor vessel type; TV). In the case of TV-type tumors (renal cell carcinoma and hepatocellular carcinoma), inhibiting VEGFR2 improved intratumoral distribution, while no effect was found in the case of SV-type tumors (colorectal cancer). Moreover, through a comparison of the intratumoral distribution of LPs with a variety of physical properties (100 nm vs 400 nm, neutral vs negative vs positive), VEGFR2 inhibition was found to alter the tumor microenvironment, including heparan sulfate proteoglycans (HSPGs). In addition, the results regarding the effect of the size of nanoparticles indicated that VEGFR2 inhibition improved the penetration of nanoparticles through the vessel wall, but not via permeability, suggesting the involvement of an unknown mechanism. Our findings suggest that a combination of anti-angiogenic therapy and delivery via the EPR effect would be useful in certain cases, and that altering the tumor microenvironment by VEGFR2 blockade has a drastic effect on the intratumoral distribution of nanoparticles
Oxidative Stress: A Possible Trigger for Pelvic Organ Prolapse
Pelvic organ prolapse is a frequent health problem in women, encountered worldwide, its physiopathology being still incompletely understood. The integrity of the pelvic-supportive structures is a key element that prevents the prolapse of the pelvic organs. Numerous researchers have underlined the role of connective tissue molecular changes in the pathogenesis of pelvic organ prolapse and have raised the attention upon oxidative stress as an important element involved in its appearance. The advancements made over the years in terms of molecular biology have allowed researchers to investigate how the constituent elements of the pelvic-supportive structures react in conditions of oxidative stress. The purpose of this paper is to underline the importance of oxidative stress in the pathogenesis of pelvic organ prolapse, as well as to highlight the main oxidative stress molecular changes that appear at the level of the pelvic-supportive structures. Sustained mechanical stress is proven to be a key factor in the appearance of pelvic organ prolapse, correlating with increased levels of free radicals production and mitochondrial-induced fibroblasts apoptosis, the rate of cellular apoptosis depending on the intensity of the mechanical stress, and the period of time the mechanical stress is applied. Oxidative stress hinders normal cellular signaling pathways, as well as different important cellular components like proteins, lipids, and cellular DNA, therefore significantly interfering with the process of collagen and elastin synthesis
Diagnostic challenges in neuroinfections: case report and literature review
Meningitis and encephalitis are a group of neuroinfectious diseases that require both correct and early diagnosis and etiopathogenic treatment, because their potential for severe evolution, is often being associated with sequelae. In addition to the detailed anamnesis and clinical examination, it is important to know the specific neurological manifestations at the beginning in order to decide properly the indication to perform the lumbar puncture for identifying an etiopathogenic agent in order to administer a targeted treatment. We present the approach both in terms of diagnosis and treatment, in case of an elderly patient with a favourable evolution, towards healing, without associating neurological sequelae. At the same time, we present a synthesis of the novelties of diagnostic and treatment methods in infectious meningitis and encephalitis