53 research outputs found
Electrochemical tuning of capacitive response of graphene oxide
Increasing energy demands of modern society requires deep understanding of
the properties of energy storage materials as well as their performance tuning.
We show that the capacitance of graphene oxide (GO) can be precisely tuned
using a simple electrochemical reduction route. In situ resistance
measurements, combined with cyclic voltammetry measurement and Raman
spectroscopy, have shown that upon the reduction GO is irreversibly
deoxygenated which is further accompanied with structural ordering and
increasing of electrical conductivity. The capacitance is maximized when the
concentration of oxygen functional groups is properly balanced with the
conductivity. Any further reduction and de-oxygenation leads to the gradual
loss of the capacitance. The observed trend is independent on the preparation
route and on the exact chemical and structural properties of GO. It is proposed
that an improvement of capacitive properties of any GO can be achieved by
optimization of its reduction conditions.Comment: 23 pages, 7 figures, 59 reference
Electrochemical tuning of capacitive response of graphene oxide
The increasing energy demands of modern society require a deep understanding of the properties of energy storage materials, as well as the tuning of their performance. We show that the capacitance of graphene oxide (GO) can be precisely tuned using a simple electrochemical reduction route. In situ resistance measurements, in combination with cyclic voltammetry measurements and Raman spectroscopy, have shown that upon reduction GO is irreversibly deoxygenated, which is further accompanied by structural ordering and an increase in electrical conductivity. The capacitance is maximized when the concentration of oxygen functional groups is properly balanced with the conductivity. Any further reduction and deoxygenation leads to a gradual loss of capacitance. The observed trend is independent of the preparation route and the exact chemical and structural properties of GO. It is proposed that an improvement in the capacitive properties of any GO can be achieved by optimization of its reduction conditions.This is the peer-reviewed version of the following article: Gutić, Sanjin J., Dževad Kozlica, Fehim Korać, Danica Bajuk-Bogdanović, Miodrag Mitrić, Vladimir M. Mirsky, Slavko V. Mentus, and Igor A. Pašti. "Electrochemical tuning of capacitive response of graphene oxide." (2018). [https://doi.org/10.1039/C8CP03631D]Published version available at: [http://vinar.vin.bg.ac.rs/handle/123456789/7877
Native aggregation as a cause of origin of temporary cellular structures needed for all forms of cellular activity, signaling and transformations
According to the hypothesis explored in this paper, native aggregation is genetically controlled (programmed) reversible aggregation that occurs when interacting proteins form new temporary structures through highly specific interactions. It is assumed that Anfinsen's dogma may be extended to protein aggregation: composition and amino acid sequence determine not only the secondary and tertiary structure of single protein, but also the structure of protein aggregates (associates). Cell function is considered as a transition between two states (two states model), the resting state and state of activity (this applies to the cell as a whole and to its individual structures). In the resting state, the key proteins are found in the following inactive forms: natively unfolded and globular. When the cell is activated, secondary structures appear in natively unfolded proteins (including unfolded regions in other proteins), and globular proteins begin to melt and their secondary structures become available for interaction with the secondary structures of other proteins. These temporary secondary structures provide a means for highly specific interactions between proteins. As a result, native aggregation creates temporary structures necessary for cell activity
3-Thienylboronic Acid as a Receptor for Diol-Containing Compounds: A Study by Isothermal Titration Calorimetry
The electrochemical activity of 3-thienylboronic acid and its feature to form polymer films makes it a perspective receptor material for sensor applications. The affinity properties of this compound were studied here by isothermal titration calorimetry. A number of different analytes were tested, and the highest binding enthalpy was observed for sorbitol and fructose. An increase of pH in the range of 5.5–10.6 results in the rise of the binding enthalpy with an increase of the binding constant to ~8400 L/mol for sorbitol or ~3400 L/mol for fructose. The dependence of the binding constant on pH has an inflection point at pH 7.6 with a slope that is a ten-fold binding constant per one pH unit. The binding properties of 3-thienylboronic acid were evaluated to be very close to that of the phenylboronic acid, but the electrochemical activity of 3-thienylboronic acid provides a possibility of external electrical control: dependence of the affinity of 3-thienylboronic acid on its redox state defined by the presence of ferro/ferricyanide in different ratios was demonstrated. The results show that 3-thienylboronic acid can be applied in smart chemical sensors with electrochemically controllable receptor affinity
3-Thienylboronic Acid as a Receptor for Diol-Containing Compounds: A Study by Isothermal Titration Calorimetry
The electrochemical activity of 3-thienylboronic acid and its feature to form polymer films makes it a perspective receptor material for sensor applications. The affinity properties of this compound were studied here by isothermal titration calorimetry. A number of different analytes were tested, and the highest binding enthalpy was observed for sorbitol and fructose. An increase of pH in the range of 5.5–10.6 results in the rise of the binding enthalpy with an increase of the binding constant to ~8400 L/mol for sorbitol or ~3400 L/mol for fructose. The dependence of the binding constant on pH has an inflection point at pH 7.6 with a slope that is a ten-fold binding constant per one pH unit. The binding properties of 3-thienylboronic acid were evaluated to be very close to that of the phenylboronic acid, but the electrochemical activity of 3-thienylboronic acid provides a possibility of external electrical control: dependence of the affinity of 3-thienylboronic acid on its redox state defined by the presence of ferro/ferricyanide in different ratios was demonstrated. The results show that 3-thienylboronic acid can be applied in smart chemical sensors with electrochemically controllable receptor affinity
Detection of Single Sub-Micrometer Objects of Biological or Technical Origin Using Wide Field Surface Plasmon Microscopy
Detection of nano- and microparticles is an important task for chemical analytics, medical [...
Capacitive monitoring of protein immobilization and antigen–antibody reactions on monomolecular alkylthiol films on gold electrodes
Self-assembled monolayers of v-mercaptohexadecanoic acid and vmercaptohexadecylamine on gold electrodes are stable at neutral pH and display pure capacitive behavior at frequencies around 20 Hz. Different methods of covalent immobilization of proteins on these monolayers are compared. Various reagents including succinimides, thionylchloride, p-nitrophenol and carbodiimides were used to activate the carboxy groups of the adsorbed monolayer of v-mercaptohexadecanoic acid. Glutaraldehyde, cyanuric chloride and phenylene diisocyanate were used to activate the amino groups of the monolayer of vmercaptohexadecylamine. The immobilization of albumin on the activated surface was studied by capacitive measurements. The N-hydroxysuccinimide and carbodiimide methods were identified as most suitable for protein immobilization in that they did not compromise the insulating properties of the alkylthiol layer and led to maximal increase of its dielectric thickness. These approaches were used for a layer-by-layer preparation of a capacitive immunosensor. Specifically, antibodies to human serum albumin were immobilized on the alkylthiol monolayer. Binding of the antigen led to a decrease of the electrode capacitance. The detection limit of the immunosensor is as low as 15 nM (1 mg/l)
- …