116 research outputs found
Robust design of a reentry unmanned space vehicle by multifidelity evolution control
This paper addresses the preliminary robust design of a small-medium scale re-entry unmanned space vehicle. A hybrid optimization technique is proposed that couples an evolutionary multi-objective algorithm with a direct transcription method for optimal control problems. Uncertainties on the aerodynamic forces and vehicle mass are integrated in the design process and the hybrid algorithm searches for geometries that a) minimize the mean value of the maximum heat flux, b) maximize the mean value of the maximum achievable distance, and c) minimize the variance of the maximum heat flux. The evolutionary part handles the system design parameters of the vehicle and the uncertain functions, while the direct transcription method generates optimal control profiles for the re-entry trajectory of each individual of the population. During the optimization process, artificial neural networks are used to approximate the aerodynamic forces required by the direct transcription method. The artificial neural networks are trained and updated by means of a multi-fidelity, evolution control approach
Evolutionary design of a full–envelope flight control system for an unstable fighter aircraft
The use of an evolutionary algorithm in the framework of H∞ control theory is being considered as a means for synthesizing controller gains that minimize a weighted combination of the infinite-norm of the sensitivity function (for disturbance attenuation requirements) and complementary sensitivity function (for robust stability requirements) at the same time. The case study deals with the stability and control augmentation of an unstable high-performance jet aircraft. Constraints on closed-loop response are also enforced, that represent typical requirements on airplane handling qualities, that makes the control law synthesis process more demanding. Gain scheduling is required, in order to obtain satisfactory performance over the whole flight envelope, so that the synthesis is performed at different reference trim conditions, for several values of the dynamic pressure, Q, used as the scheduling parameter. Nonetheless, the dynamic behaviour of the aircraft may exhibit significant variations when flying at different altitudes h, even for the same value of the dynamic pressure, so that a trade-off is required between different feasible controllers synthesized for a given value of Q, but different h. A multi-objective search is thus considered for the determination of the best suited solution to be introduced in the scheduling of the control law. The obtained results are then tested on a longitudinal nonlinear model of the aircraft
Testing approaches for global optimization of space trajectories
In this paper, the procedures to test global search algorithms applied to space trajectory design problems are discussed. Furthermore, a number of performance indexes that can be used to evaluate the effectiveness of the tested algorithms are presented. The performance indexes are then compared and the actual significance of each one of them is highlighted. Three global optimization algorithms are tested on three typical space trajectory design problems
Multi-objective design of robust flight control systems
The aim of this work is to demonstrate the capabilities of evolutionary methods in the design of robust controllers for unstable fighter aircraft in the framework of H1 control theory. A multi–objective evolutionary algorithm is used to find the controller gains that minimize a weighted combination of the infinite–norm of the sensitivity function (for disturbance attenuation requirements) and complementary sensitivity function (for robust stability requirements). After considering a single operating point for a level flight trim condition of a F-16 fighter aircraft model, two different approaches will then be considered to extend the domain of validity of the control law: 1) the controller is designed for different operating points and gain scheduling is adopted; 2) a single control law is designed for all the considered operating points by multiobjective minimisation. The two approaches will be analysed and compared in terms of efficacy and required human and computational resources
Optimal power harness routing for small-scale satellites
This paper presents an approach to optimal power harness design based on a modified ant colony optimisation algorithm. The optimisation of the harness routing topology is formulated as a constrained multi-objective optimisation problem in which the main objectives are to minimise the length (and therefore the mass) of the harness. The modified ant colony optimisation algorithm automatically routes different types of wiring, creating the optimal harness layout. During the optimisation the length, mass and bundleness of the cables are computed and used as cost functions. The optimisation algorithm works incrementally on a finite set of waypoints, forming a tree, by adding and evaluating one branch at a time, utilising a set of heuristics using the cable length and cable bundling as criteria to select the optimal path. Constraints are introduced as forbidden waypoints through which digital agents (hereafter called ants) cannot travel. The new algorithm developed will be applied to the design of the harness of a small satellite, with results highlighting the capabilities and potentialities of the code
An inflationary differential evolution algorithm for space trajectory optimization
In this paper we define a discrete dynamical system that governs the
evolution of a population of agents. From the dynamical system, a variant of
Differential Evolution is derived. It is then demonstrated that, under some
assumptions on the differential mutation strategy and on the local structure of
the objective function, the proposed dynamical system has fixed points towards
which it converges with probability one for an infinite number of generations.
This property is used to derive an algorithm that performs better than standard
Differential Evolution on some space trajectory optimization problems. The
novel algorithm is then extended with a guided restart procedure that further
increases the performance, reducing the probability of stagnation in deceptive
local minima.Comment: IEEE Transactions on Evolutionary Computation 2011. ISSN 1089-778
Multidisciplinary design of a micro-USV for re-entry operations
Unmanned Space Vehicles (USV) are seen as a test-bed for enabling technologies and as a carrier to deliver and return experiments to and from low-Earth orbit. USV's are a potentially interesting solution also for the exploration of other planets or as long-range recognisance vehicles. As test bed, USV's are seen as a stepping stone for the development of future generation re-usable launchers but also as way to test key technologies for re-entry operations. Examples of recent developments are the PRORA-USV, designed by the Italian Aerospace Research Center (CIRA) in collaboration with Gavazzi Space, or the Boeing X-37B Orbital Test Vehicle (OTV), that is foreseen as an alternative to the space shuttle to deliver experiments into Earth orbit. Among the technologies to be demonstrated with the X-37 are improved thermal protection systems, avionics, the autonomous guidance system, and an advanced airfram
Optimal dynamic operations scheduling for small-scale satellites
A satellite's operations schedule is crafted based on each subsystem/payload operational needs, while taking into account the available resources on-board. A number of operating modes are carefully designed, each one with a different operations plan that can serve emergency cases, reduced functionality cases, the nominal case, the end of mission case and so on. During the mission span, should any operations planning amendments arise, a new schedule needs to be manually developed and uplinked to the satellite during a communications' window. The current operations planning techniques over a reduced number of solutions while approaching operations scheduling in a rigid manner. Given the complexity of a satellite as a system as well as the numerous restrictions and uncertainties imposed by both environmental and technical parameters, optimising the operations scheduling in an automated fashion can over a flexible approach while enhancing the mission robustness. In this paper we present Opt-OS (Optimised Operations Scheduler), a tool loosely based on the Ant Colony System algorithm, which can solve the Dynamic Operations Scheduling Problem (DOSP). The DOSP is treated as a single-objective multiple constraint discrete optimisation problem, where the objective is to maximise the useful operation time per subsystem on-board while respecting a set of constraints such as the feasible operation timeslot per payload or maintaining the power consumption below a specific threshold. Given basic mission inputs such as the Keplerian elements of the satellite's orbit, its launch date as well as the individual subsystems' power consumption and useful operation periods, Opt-OS outputs the optimal ON/OFF state per subsystem per orbital time step, keeping each subsystem's useful operation time to a maximum while ensuring that constraints such as the power availability threshold are never violated. Opt-OS can provide the flexibility needed for designing an optimal operations schedule on the spot throughout any mission phase as well as the ability to automatically schedule operations in case of emergency. Furthermore, Opt-OS can be used in conjunction with multi-objective optimisation tools for performing full system optimisation. Based on the optimal operations schedule, subsystem design parameters are being optimised in order to achieve the maximal usage of the satellite while keeping its mass minimal
Robust aerodynamic design of variable speed wind turbine rotors
This study focuses on the robust aerodynamic design of the bladed rotor of small horizontal axis wind turbines. The optimization process also considers the effects of manufacturing and assembly tolerances on the yearly energy production. The aerodynamic performance of the rotors so designed has reduced sensitivity to manufacturing and assembly errors. The geometric uncertainty affecting the rotor shape is represented by normal distributions of the pitch angle of the blades, and the twist angle and chord of their airfoils. The aerodynamic module is a blade element momentum theory code. Both Monte Carlo-based and the Univariate ReducedQuadrature technique, a novel deterministic uncertainty propagationmethod, are used. The performance of the two approaches is assessed both interms of accuracy and computational speed. The adopted optimization method is based on a hybrid multi-objective evolutionary strategy. The presented results highlight that the sensitivity of the yearly production to geometric uncertainties can be reduced by reducing the rotational speed and increasing the aerodynamic blade loads
Global error estimation in CFD mesh coarsening process for uncertainty quantification methods
Due to high performance of modern computers, Uncertainty Quantification is becoming an important part of engineering design. Every non intrusive Uncertainty Quantification method requires a considerable number of evaluations of the model, meaning that the design process is more expensive in terms of computational resources/time. In Computational Fluid Dynamics, the usual practice is to reduce the computational time by reducing the number of nodes of the used mesh. Each coarsening of the mesh leads to the increase of the error measured as the difference between the real solution and the solution provided by the computational model. In this work, an approach for quantification of the global error around the stochastic domain, in a mesh reduction process, is described and results obtained for a test case are detailed. The method is based on a comparison of the high accurate mesh against coarse mesh with lower accuracy, but less expensive in terms of computational time. The global error is defined as a volume difference between surrogate models created in the stochastic domain. The stochastic domain is given by pre-specified input variables with appropriate boundaries. Surrogate models are used and a non intrusive polynomial chaos model is created with response samples from high and low accuracy mesh. For the chosen test case, the input variables, related to the stochastic space, were the free stream pressure and free stream Mach number. A hypersonic flow solver developed at the von Karman Institute, Cosmic, was used to compute properties of a flow around the reentry spacecraft. A computational expensive mesh was used as a reference mesh. Due to computational resources, it was impossible to use expansive mesh for Monte Carlo simulation or high order Polynomial Chaos. Therefore, the global error estimation approach was applied to find an accurate and relatively inexpensive mesh for Uncertainty Quantification in hypersonic simulation. Multiple meshes with different coarsening were tested, based on expert knowledge of the problem. The global error estimation method allowed for finding a final mesh, with an error on the mean value 0.48% and on the standard deviation 5.89%, which was 4 times faster than the reference mesh
- …