60 research outputs found

    Identification of Urinary Biomarkers of Colon Inflammation in IL10−/− Mice Using Short-Column LCMS Metabolomics

    Get PDF
    The interleukin-10-deficient (IL10−/−) mouse develops colon inflammation in response to normal intestinal microflora and has been used as a model of Crohn's disease. Short-Column LCMS metabolite profiling of urine from IL10−/− and wild-type (WT) mice was used, in two independent experiments, to identify mass spectral ions differing in intensity between these two genotypes. Three differential metabolites were identified as xanthurenic acid and as the glucuronides of xanthurenic acid and of α-CEHC (2,5,7,8-tetramethyl-2-(2′-carboxyethyl)-6-hydroxychroman). The significance of several differential metabolites as potential biomarkers of colon inflammation was evaluated in an experiment which compared metabolite concentrations in IL10−/− and WT mice housed, either under conventional conditions and dosed with intestinal microflora, or maintained under specific pathogen-free (SPF) conditions. Concentrations of xanthurenic acid, α-CEHC glucuronide, and an unidentified metabolite m/z 495−/497+ were associated with the degree of inflammation in IL10−/− mice and may prove useful as biomarkers of colon inflammation

    The involvement of the phenylpropanoid and jasmonate pathways in methyl jasmonate-induced soft rot resistance in kiwifruit (Actinidia chinensis)

    Get PDF
    Botryosphaeria dothidea is a major postharvest causal agent of soft rot in kiwifruit. Methyl jasmonate (MeJA) is an important plant hormone that participates as a plant defense against pathogens from a signal molecule. However, the impact and regulatory mechanism of MeJA on the attenuation of kiwifruit fungal decay remains unknown. This work investigated the effects of exogenous MeJA on the enzyme activity, metabolite content and gene expression of the phenylpropanoid and jasmonate pathways in kiwifruit. The results revealed that MeJA inhibited the expansion of B. dothidea lesion diameter in kiwifruit (Actinidia chinensis cv. ‘Hongyang’), enhanced the activity of enzymes (phenylalanine ammonia lyase, cinnamate 4-hydroxylase, 4-coumarate: coenzyme A ligase, cinnamyl alcohol dehydrogenase, peroxidase and polyphenol oxidase), and upregulated the expression of related genes (AcPAL, AcC4H, Ac4CL, and AcCAD). The accumulation of metabolites (total phenolics, flavonoids, chlorogenic acid, caffeic acid and lignin) with inhibitory effects on pathogens was promoted. Moreover, MeJA enhanced the expression of AcLOX, AcAOS, AcAOC, AcOPR3, AcJAR1, AcCOI1 and AcMYC2 and reduced the expression of AcJAZ. These results suggest that MeJA could display a better performance in enhancing the resistance of disease in kiwifruit by regulating the phenylpropanoid pathway and jasmonate pathway

    A QTL analysis of host plant effects on fungal endophyte biomass and alkaloid expression in perennial ryegrass.

    Get PDF
    The association between perennial ryegrass (Loliumperenne L.) and its Epichloë fungal endophyte symbiont, Epichloëfestucae var. lolii, supports the persistence of ryegrass-based pastures principally by producing bioactive alkaloid compounds that deter invertebrate herbivory. The host plant genotype affects endophyte trait expression, and elucidation of the underlying genetic mechanisms would enhance understanding of the symbiosis and support improvement of inplanta endophyte performance through plant breeding. Rapid metabolite profiling and enzyme-linked immunosorbent assay were used to quantify endophyte alkaloids and mycelial mass (MM) in leaves harvested, in consecutive autumns, from an F1 mapping population hosting standard toxic endophyte. Co-aligned quantitative trait loci (QTL) on linkage groups (LG)2, LG4 and LG7 for MM and concentrations of alkaloids peramine and ergovaline confirmed host plant effects on both MM and alkaloid level and inferred the effect on alkaloids was modulated through the quantity of endophyte present in the leaf tissue. For ergovaline, host regulation independent of endophyte concentration was also indicated, by the presence of MM-independent ergovaline QTL on LG4 and LG7. Partitioning of host genetic influence between MM-dependent and MM-independent mechanisms was also observed for the alkaloid N-formylloline (NFL), in a second mapping population harbouring a tall fescue-sourced endophyte. Single-marker analysis on repeated MM and NFL measures identified marker-trait associations at nine genome locations, four affecting both NFL and MM but five influencing NFL concentration alone. Co-occurrence of QTL on LG3, LG4 and LG7 in both mapping populations is evidence for host regulatory loci effective across genetic backgrounds and independent of endophyte variant. Variation at these loci may be exploited using marker-assisted breeding to improve endophyte trait expression in different host population × endophyte combinations

    Dynamic Transformation of Nano-MoS2 in a Soil-Plant System Empowers Its Multifunctionality on Soybean Growth

    Get PDF
    Molybdenum disulfide (nano-MoS2) nanomaterials have shown great potential for biomedical and catalytic applications due to their unique enzyme-mimicking properties. However, their potential agricultural applications have been largely unexplored. A key factor prior to the application of nano-MoS2 in agriculture is understanding its behavior in a complex soil-plant system, particularly in terms of its transformation. Here, we investigate the distribution and transformation of two types of nano-MoS2 (MoS2 nanoparticles and MoS2 nanosheets) in a soil-soybean system through a combination of synchrotron radiation-based X-ray absorption near-edge spectroscopy (XANES) and single-particle inductively coupled plasma mass spectrometry (SP-ICP-MS). We found that MoS2 nanoparticles (NPs) transform dynamically in soil and plant tissues, releasing molybdenum (Mo) and sulfur (S) that can be incorporated gradually into the key enzymes involved in nitrogen metabolism and the antioxidant system, while the rest remain intact and act as nanozymes. Notably, there is 247.9 mg/kg of organic Mo in the nodule, while there is only 49.9 mg/kg of MoS2 NPs. This study demonstrates that it is the transformation that leads to the multifunctionality of MoS2, which can improve the biological nitrogen fixation (BNF) and growth. Therefore, MoS2 NPs enable a 30% increase in yield compared to the traditional molybdenum fertilizer (Na2MoO4). Excessive transformation of MoS2 nanosheets (NS) leads to the overaccumulation of Mo and sulfate in the plant, which damages the nodule function and yield. The study highlights the importance of understanding the transformation of nanomaterials for agricultural applications in future studies.</p

    Efficacy of transcranial direct current stimulation for improving postoperative quality of recovery in elderly patients undergoing lower limb major arthroplasty: a randomized controlled substudy

    Get PDF
    BackgroundPrevious studies have demonstrated improvements in motor, behavioral, and emotional areas following transcranial direct current stimulation (tDCS), but no published studies have reported the efficacy of tDCS on postoperative recovery quality in patients undergoing lower limb major arthroplasty. We hypothesized that tDCS might improve postoperative recovery quality in elderly patients undergoing lower limb major arthroplasty.MethodsNinety-six patients (≥65 years) undergoing total hip arthroplasty (THA) or total knee arthroplasty (TKA) were randomized to receive 2 mA tDCS for 20 min active-tDCS or sham-tDCS. The primary outcome was the 15-item quality of recovery (QoR-15) score on postoperative day one (Т2). Secondary outcomes included the QoR-15 scores at the 2nd hour (T1), the 1st month (Т3), and the 3rd month (Т4) postoperatively, numeric rating scale scores, and fatigue severity scale scores.ResultsNinety-six elderly patients (mean age, 71 years; 68.7% woman) were analyzed. Higher QoR-15 scores were found in the active-tDCS group at T2 (123.0 [114.3, 127.0] vs. 109.0 [99.3, 115.3]; median difference, 13.0; 95% CI, 8.0 to 17.0; p &lt; 0.001). QoR-15 scores in the active-tDCS group were higher at T1 (p &lt; 0.001), T3 (p = 0.001), and T4 (p = 0.001). The pain scores in the active-tDCS group were lower (p &lt; 0.001 at motion; p &lt; 0.001 at rest). The fatigue degree scores were lower in the active-tDCS group at T1 and T2 (p &lt; 0.001 for each).ConclusiontDCS may help improve the quality of early recovery in elderly patients undergoing lower limb major arthroplasty.Clinical trial registrationThe trial was registered at the China Clinical Trial Center (ChiCTR2200057777, https://www.chictr.org.cn/showproj.html?proj=162744)

    Evolutionarily missing and conserved tRNA genes in human and avian

    Get PDF
    Viral infection heavily relies on host transfer RNA (tRNA) for viral RNA decoding. Counterintuitively, not all tRNA species based on anticodon are matched to all 64-triplet codons during evolution. Life solves this problem by cognate tRNA species via wobbling decoding. We found that 14 out of 64 tRNA genes in humans and the main avian species (chicken and duck) were parallelly missing, including 8 tRNA-A34NN and 6 tRNA-G34NN species. By analyzing the conservation of key motifs in tRNA genes, we found that box A and B served as intragenic tRNA promoters were evolutionally conserved among human, chicken, and duck. Thus, decoding viral RNA by similar wobbling strategies and tRNA transcripts may be
    corecore