12 research outputs found
Nerves projecting from the intrinsic cardiac ganglia of the pulmonary veins modulate sinoatrial node pacemaker function
Rationale: Autonomic nerves from sinoatrial node (SAN) ganglia are known to regulate SAN function. However, it is unclear whether remote pulmonary vein ganglia (PVG) also modulate SAN pacemaker rhythm.
Objective: To investigate whether in the mouse heart PVG modulate SAN function.
Methods and Results: In hearts from 45 C57BL and 7 Connexin40+/GFP mice, we used tyrosine-hydroxylase (TH) and choline-acetyltransferase (ChAT) immunofluorescence labeling to characterize adrenergic and cholinergic elements, repectively, within the PVG and SAN. PVG project postganglionic nerves to the SAN. TH and ChAT stained nerves, enter the SAN as an extensive, dense mesh-like neural network. Neurons in PVG are biphenotypic, containing ChAT and TH positive neurons. In Langendorff-perfused hearts, we compared effects of electrical stimulation of PVG, posterior (PRCVG) and anterior right vena cava ganglia (ARCVG) using 200-2000 ms trains of pulses (300μs, 0.2-0.6mA, 200Hz). Sympathetic and/or parasympathetic blockade was achieved using 0.5μM propranolol and 1μM atropine, respectively. Epicardial optical mapping of SAN activation was performed before, during and after ganglion stimulation. PVG stimulation increased the P-P interval by 36±9%; PRCVG stimulation increased the P-P interval by 42±11%. ARCVG stimulation produced no change. Propranolol perfusion increased the PVG stimulation effect to 43±13%. Atropine caused a 5±6% decrease. In optical mapping experiments of whole hearts and isolated atrial preparations, PVG stimulation shifted the origin of SAN discharges to varying locations.
Conclusions: PVG contain cholinergic, adrenergic and biphenotipic neurons whose axons project across the right atrium to richly innervate the SAN region and contribute significantly to regulation of SAN function.Zarzoso Muñoz, M.; Rysevaite, K.; Milstein, ML.; Calvo Saiz, CJ.; Kean, AC.; Atienza Fernández, F.; Pauza, DH.... (2013). Nerves projecting from the intrinsic cardiac ganglia of the pulmonary veins modulate sinoatrial node pacemaker function. Cardiovascular Research. 566-575. doi:10.1093/cvr/cvt081S566575Johnson, T. A., Gray, A. L., Lauenstein, J.-M., Newton, S. S., & Massari, V. J. (2004). Parasympathetic control of the heart. I. An interventriculo-septal ganglion is the major source of the vagal intracardiac innervation of the ventricles. Journal of Applied Physiology, 96(6), 2265-2272. doi:10.1152/japplphysiol.00620.2003Rysevaite, K., Saburkina, I., Pauziene, N., Noujaim, S. F., Jalife, J., & Pauza, D. H. (2011). Morphologic pattern of the intrinsic ganglionated nerve plexus in mouse heart. Heart Rhythm, 8(3), 448-454. doi:10.1016/j.hrthm.2010.11.019Yuan, B.-X., Ardell, J. L., Hopkins, D. A., & Armour, J. A. (1993). Differential cardiac responses induced by nicotine sensitive canine atrial and ventricular neurones. Cardiovascular Research, 27(5), 760-769. doi:10.1093/cvr/27.5.760Rysevaite, K., Saburkina, I., Pauziene, N., Vaitkevicius, R., Noujaim, S. F., Jalife, J., & Pauza, D. H. (2011). Immunohistochemical characterization of the intrinsic cardiac neural plexus in whole-mount mouse heart preparations. Heart Rhythm, 8(5), 731-738. doi:10.1016/j.hrthm.2011.01.013Pauza, D. H., Pauziene, N., Pakeltyte, G., & Stropus, R. (2002). Comparative quantitative study of the intrinsic cardiac ganglia and neurons in the rat, guinea pig, dog and human as revealed by histochemical staining for acetylcholinesterase. Annals of Anatomy - Anatomischer Anzeiger, 184(2), 125-136. doi:10.1016/s0940-9602(02)80005-xPauza, D. H., Skripka, V., & Pauziene, N. (2002). Morphology of the Intrinsic Cardiac Nervous System in the Dog: A Whole-Mount Study Employing Histochemical Staining with Acetylcholinesterase. Cells Tissues Organs, 172(4), 297-320. doi:10.1159/000067198Arora, R. C., Waldmann, M., Hopkins, D. A., & Armour, J. A. (2003). Porcine intrinsic cardiac ganglia. The Anatomical Record, 271A(1), 249-258. doi:10.1002/ar.a.10030Gatti, P. J., Johnson, T. A., & John Massari, V. (1996). Can neurons in the nucleus ambiguus selectively regulate cardiac rate and atrio-ventricular conduction? Journal of the Autonomic Nervous System, 57(1-2), 123-127. doi:10.1016/0165-1838(95)00104-2Zhuang, S., Zhang, Y., Mowrey, K. A., Li, J., Tabata, T., Wallick, D. W., … Mazgalev, T. N. (2002). Ventricular Rate Control by Selective Vagal Stimulation Is Superior to Rhythm Regularization by Atrioventricular Nodal Ablation and Pacing During Atrial Fibrillation. Circulation, 106(14), 1853-1858. doi:10.1161/01.cir.0000031802.58532.04CHEN, J., WASMUND, S. L., & HAMDAN, M. H. (2006). Back to the Future: The Role of the Autonomic Nervous System in Atrial Fibrillation. Pacing and Clinical Electrophysiology, 29(4), 413-421. doi:10.1111/j.1540-8159.2006.00362.xArmour, J. A. (2008). Potential clinical relevance of the ‘little brain’ on the mammalian heart. Experimental Physiology, 93(2), 165-176. doi:10.1113/expphysiol.2007.041178LAZZARA, R., SCHERLAG, B. J., ROBINSON, M. J., & SAMET, P. (1973). Selective In Situ Parasympathetic Control of the Canine Sinoatrial and Atrioventricular Nodes. Circulation Research, 32(3), 393-401. doi:10.1161/01.res.32.3.393Gray, A. L., Johnson, T. A., Ardell, J. L., & Massari, V. J. (2004). Parasympathetic control of the heart. II. A novel interganglionic intrinsic cardiac circuit mediates neural control of heart rate. Journal of Applied Physiology, 96(6), 2273-2278. doi:10.1152/japplphysiol.00616.2003Pappone, C., Santinelli, V., Manguso, F., Vicedomini, G., Gugliotta, F., Augello, G., … Alfieri, O. (2004). Pulmonary Vein Denervation Enhances Long-Term Benefit After Circumferential Ablation for Paroxysmal Atrial Fibrillation. Circulation, 109(3), 327-334. doi:10.1161/01.cir.0000112641.16340.c7MIQUEROL, L., MEYSEN, S., MANGONI, M., BOIS, P., VANRIJEN, H., ABRAN, P., … GROS, D. (2004). Architectural and functional asymmetry of the His–Purkinje system of the murine heart. Cardiovascular Research, 63(1), 77-86. doi:10.1016/j.cardiores.2004.03.007Jalife, J., Slenter, V. A., Salata, J. J., & Michaels, D. C. (1983). Dynamic vagal control of pacemaker activity in the mammalian sinoatrial node. Circulation Research, 52(6), 642-656. doi:10.1161/01.res.52.6.642Fedorov, V. V., Hucker, W. J., Dobrzynski, H., Rosenshtraukh, L. V., & Efimov, I. R. (2006). Postganglionic nerve stimulation induces temporal inhibition of excitability in rabbit sinoatrial node. American Journal of Physiology-Heart and Circulatory Physiology, 291(2), H612-H623. doi:10.1152/ajpheart.00022.2006Saburkina, I., & Pauza, D. H. (2006). Location and variability of epicardiac ganglia in human fetuses. Anatomy and Embryology, 211(6), 585-594. doi:10.1007/s00429-006-0110-4SlavÃková, J., Kuncová, J., Reischig, J., & Dvořáková, M. (2003). Neurochemical Research, 28(3/4), 593-598. doi:10.1023/a:1022837810357Tan, A. Y., Li, H., Wachsmann-Hogiu, S., Chen, L. S., Chen, P.-S., & Fishbein, M. C. (2006). Autonomic Innervation and Segmental Muscular Disconnections at the Human Pulmonary Vein-Atrial Junction. Journal of the American College of Cardiology, 48(1), 132-143. doi:10.1016/j.jacc.2006.02.054Vaitkevicius, R., Saburkina, I., Rysevaite, K., Vaitkeviciene, I., Pauziene, N., Zaliunas, R., … Pauza, D. H. (2009). Nerve Supply of the Human Pulmonary Veins: An Anatomical Study. Heart Rhythm, 6(2), 221-228. doi:10.1016/j.hrthm.2008.10.027Mabe, A. M., & Hoover, D. B. (2009). Structural and functional cardiac cholinergic deficits in adult neurturin knockout mice. Cardiovascular Research, 82(1), 93-99. doi:10.1093/cvr/cvp029Beau, S. L., Hand, D. E., Schuessler, R. B., Bromberg, B. I., Kwon, B., Boineau, J. P., & Saffitz, J. E. (1995). Relative Densities of Muscarinic Cholinergic and β-Adrenergic Receptors in the Canine Sinoatrial Node and Their Relation to Sites of Pacemaker Activity. Circulation Research, 77(5), 957-963. doi:10.1161/01.res.77.5.957Mangoni, M. E., & Nargeot, J. (2008). Genesis and Regulation of the Heart Automaticity. Physiological Reviews, 88(3), 919-982. doi:10.1152/physrev.00018.2007Brack, K. E., Coote, J. H., & Ng, G. A. (2003). Interaction between direct sympathetic and vagus nerve stimulation on heart rate in the isolated rabbit heart. Experimental Physiology, 89(1), 128-139. doi:10.1113/expphysiol.2003.002654Levy, M. N., & Zieske, H. (1969). Autonomic control of cardiac pacemaker activity and atrioventricular transmission. Journal of Applied Physiology, 27(4), 465-470. doi:10.1152/jappl.1969.27.4.465Hartzell, H. C. (1988). Regulation of cardiac ion channels by catecholamines, acetylcholine and second messenger systems. Progress in Biophysics and Molecular Biology, 52(3), 165-247. doi:10.1016/0079-6107(88)90014-4LEVY, M. N., YANG, T., & WALLICK, D. W. (1993). Assessment of Beat-by-Beat Control of Heart Rate by the Autonomic Nervous System: Molecular Biology Techniques Are Necessary, But Not Sufficient. Journal of Cardiovascular Electrophysiology, 4(2), 183-193. doi:10.1111/j.1540-8167.1993.tb01222.xLevy, M. N. (1971). Brief Reviews. Circulation Research, 29(5), 437-445. doi:10.1161/01.res.29.5.437Ng, G. A., Brack, K. E., & Coote, J. H. (2001). Effects of Direct Sympathetic and Vagus Nerve Stimulation on the Physiology of the Whole Heart - A Novel Model of Isolated Langendorff Perfused Rabbit Heart with Intact Dual Autonomic Innervation. Experimental Physiology, 86(3), 319-329. doi:10.1113/eph8602146Goldberg, J. (1975). Intra-SA-nodal pacemaker shifts induced by autonomic nerve stimulation in the dog. American Journal of Physiology-Legacy Content, 229(4), 1116-1123. doi:10.1152/ajplegacy.1975.229.4.1116Shibata, N., Inada, S., Mitsui, K., Honjo, H., Yamamoto, M., Niwa, R., … Kodama, I. (2001). Pacemaker Shift in the Rabbit Sinoatrial Node in Response to Vagal Nerve Stimulation. Experimental Physiology, 86(2), 177-184. doi:10.1113/eph8602100Glukhov, A. V., Fedorov, V. V., Anderson, M. E., Mohler, P. J., & Efimov, I. R. (2010). Functional anatomy of the murine sinus node: high-resolution optical mapping of ankyrin-B heterozygous mice. American Journal of Physiology-Heart and Circulatory Physiology, 299(2), H482-H491. doi:10.1152/ajpheart.00756.2009Michaels, D. C., Matyas, E. P., & Jalife, J. (1987). Mechanisms of sinoatrial pacemaker synchronization: a new hypothesis. Circulation Research, 61(5), 704-714. doi:10.1161/01.res.61.5.704Boyett, M. (2000). The sinoatrial node, a heterogeneous pacemaker structure. Cardiovascular Research, 47(4), 658-687. doi:10.1016/s0008-6363(00)00135-8Lemery, R., Birnie, D., Tang, A. S. L., Green, M., & Gollob, M. (2006). Feasibility study of endocardial mapping of ganglionated plexuses during catheter ablation of atrial fibrillation. Heart Rhythm, 3(4), 387-396. doi:10.1016/j.hrthm.2006.01.009Pokushalov, E., Romanov, A., Shugayev, P., Artyomenko, S., Shirokova, N., Turov, A., & Katritsis, D. G. (2009). Selective ganglionated plexi ablation for paroxysmal atrial fibrillation. Heart Rhythm, 6(9), 1257-1264. doi:10.1016/j.hrthm.2009.05.018Scherlag, B. J., Nakagawa, H., Jackman, W. M., Yamanashi, W. S., Patterson, E., Po, S., & Lazzara, R. (2005). Electrical Stimulation to Identify Neural Elements on the Heart: Their Role in Atrial Fibrillation. Journal of Interventional Cardiac Electrophysiology, 13(S1), 37-42. doi:10.1007/s10840-005-2492-2Puodziukynas, A., Kazakevicius, T., Vaitkevicius, R., Rysevaite, K., Jokubauskas, M., Saburkina, I., … Pauza, D. H. (2012). Radiofrequency catheter ablation of pulmonary vein roots results in axonal degeneration of distal epicardial nerves. Autonomic Neuroscience, 167(1-2), 61-65. doi:10.1016/j.autneu.2012.01.001Bauer, A., Deisenhofer, I., Schneider, R., Zrenner, B., Barthel, P., Karch, M., … Schmidt, G. (2006). Effects of circumferential or segmental pulmonary vein ablation for paroxysmal atrial fibrillation on cardiac autonomic function. Heart Rhythm, 3(12), 1428-1435. doi:10.1016/j.hrthm.2006.08.025Armour, J. A. (2010). Functional anatomy of intrathoracic neurons innervating the atria and ventricles. Heart Rhythm, 7(7), 994-996. doi:10.1016/j.hrthm.2010.02.01
Features and Outcomes of 899 Patients With Drug-Induced Liver Injury: The DILIN Prospective Study
The drug-induced liver injury network (DILIN) is conducting a prospective study of patients with DILI in the United States. We present characteristics and subgroup analyses from the first 1257 patients enrolled in the study
Recommended from our members
Multistep peripherin-2/rds self-assembly drives membrane curvature for outer segment disk architecture and photoreceptor viability
Rod and cone photoreceptor outer segment (OS) structural integrity is essential for normal vision; disruptions contribute to a broad variety of retinal ciliopathies. OSs possess many hundreds of stacked membranous disks, which capture photons and scaffold the phototransduction cascade. Although the molecular basis of OS structure remains unresolved, recent studies suggest that the photoreceptor-specific tetraspanin, peripherin-2/rds (P/rds), may contribute to the highly curved rim domains at disk edges. Here, we demonstrate that tetrameric P/rds self-assembly is required for generating high-curvature membranes in cellulo, implicating the noncovalent tetramer as a minimal unit of function. P/rds activity was promoted by disulfide-mediated tetramer polymerization, which transformed localized regions of curvature into high-curvature tubules of extended lengths. Transmission electron microscopy visualization of P/rds purified from OS membranes revealed disulfide-linked tetramer chains up to 100 nm long, suggesting that chains maintain membrane curvature continuity over extended distances. We tested this idea in Xenopus laevis photoreceptors, and found that transgenic expression of nonchain-forming P/rds generated abundant high-curvature OS membranes, which were improperly but specifically organized as ectopic incisures and disk rims. These striking phenotypes demonstrate the importance of P/rds tetramer chain formation for the continuity of rim formation during disk morphogenesis. Overall, this study advances understanding of the normal structure and function of P/rds for OS architecture and biogenesis, and clarifies how pathogenic loss-of-function mutations in P/rds cause photoreceptor structural defects to trigger progressive retinal degenerations. It also introduces the possibility that other tetraspanins may generate or sense membrane curvature in support of diverse biological functions
Recommended from our members
Metrics for assessing physician activity using electronic health record log data.
Electronic health record (EHR) log data have shown promise in measuring physician time spent on clinical activities, contributing to deeper understanding and further optimization of the clinical environment. In this article, we propose 7 core measures of EHR use that reflect multiple dimensions of practice efficiency: total EHR time, work outside of work, time on documentation, time on prescriptions, inbox time, teamwork for orders, and an aspirational measure for the amount of undivided attention patients receive from their physicians during an encounter, undivided attention. We also illustrate sample use cases for these measures for multiple stakeholders. Finally, standardization of EHR log data measure specifications, as outlined here, will foster cross-study synthesis and comparative research
Recommended from our members
Metrics for assessing physician activity using electronic health record log data.
Electronic health record (EHR) log data have shown promise in measuring physician time spent on clinical activities, contributing to deeper understanding and further optimization of the clinical environment. In this article, we propose 7 core measures of EHR use that reflect multiple dimensions of practice efficiency: total EHR time, work outside of work, time on documentation, time on prescriptions, inbox time, teamwork for orders, and an aspirational measure for the amount of undivided attention patients receive from their physicians during an encounter, undivided attention. We also illustrate sample use cases for these measures for multiple stakeholders. Finally, standardization of EHR log data measure specifications, as outlined here, will foster cross-study synthesis and comparative research
Loss of H3K4 methylation destabilizes gene expression patterns and physiological functions in adult murine cardiomyocytes
Histone H3 lysine 4 (H3K4me) methyltransferases and their cofactors are essential for embryonic development and the establishment of gene expression patterns in a cell-specific and heritable manner. However, the importance of such epigenetic marks in maintaining gene expression in adults and in initiating human disease is unclear. Here, we addressed this question using a mouse model in which we could inducibly ablate PAX interacting (with transcription-activation domain) protein 1 (PTIP), a key component of the H3K4me complex, in cardiac cells. Reducing H3K4me3 marks in differentiated cardiomyocytes was sufficient to alter gene expression profiles. One gene regulated by H3K4me3 was Kv channel-interacting protein 2 (Kcnip2), which regulates a cardiac repolarization current that is downregulated in heart failure and functions in arrhythmogenesis. This regulation led to a decreased sodium current and action potential upstroke velocity and significantly prolonged action potential duration (APD). The prolonged APD augmented intracellular calcium and in vivo systolic heart function. Treatment with isoproterenol and caffeine in this mouse model resulted in the generation of premature ventricular beats, a harbinger of lethal ventricular arrhythmias. These results suggest that the maintenance of H3K4me3 marks is necessary for the stability of a transcriptional program in differentiated cells and point to an essential function for H3K4me3 epigenetic marks in cellular homeostasis