3 research outputs found

    Computer aided system for segmentation and visualization of microcalcifications in digital mammograms.

    Get PDF
    Two methods for segmentation and visualization of microcalcifications in digital or digitized mammograms are described. First method is based on modern mathematical morphology, while the second one uses the multifractal approach. In the first method, by using an appropriate combination of some morphological operations, high local contrast enhancement, followed by significant suppression of background tissue, irrespective of its radiology density, is obtained. By iterative procedure, this method highly emphasizes only small bright details, possible microcalcifications. In a multifractal approach, from initial mammogram image, a corresponding multifractal "images" are created, from which a radiologist has a freedom to change the level of segmentation. An appropriate user friendly computer aided visualization (CAV) system with embedded two methods is realized. The interactive approach enables the physician to control the level and the quality of segmentation. Suggested methods were tested through mammograms from MIAS database as a gold standard, and from clinical praxis, using digitized films and digital images from full field digital mammograph

    Etude de l'extraction du nitrate de béryllium par le tributylphosphate en présence des relargants nitrates de fer et de calcium

    No full text
    The purpose of this study was to detect the level of genomic instability and p53 alterations in anaplastic astrocytoma and primary glioblastoma patients, and to evaluate their impact on glioma pathogenesis and patients outcome. AP-PCR DNA profiling revealed two types of genetic differences between tumor and normal tissue: qualitative changes which represent accumulation of changes in DNA sequence and are the manifestation of microsatellite and point mutation instability (MIN-PIN) and quantitative changes which represent amplifications or deletions of existing chromosomal material and are the manifestation of chromosomal instability (CIN). Both types of alterations were present in all analyzed samples contributing almost equally to the total level of genomic instability, and showing no differences between histological subtypes. p53 alterations were detected in 40% of samples, predominantly in anaplastic astrocytoma. The higher level of genomic instability was observed in elderly patients (>50 years) and patents with primary glioblastoma. Level of genomic instability had no impact on patients' survival, while presence of p53 alterations seemed to be a favorable prognostic factor in this case. Our results indicate that extensive genomic instability is one of the main features of malignant gliomas. (C) 2012 Elsevier Inc. All rights reserved.Ministry of Education and Science, Republic of Serbia [III41031
    corecore