435 research outputs found

    Near-infrared scattered light properties of the HR 4796 A dust ring A measured scattering phase function from 13.6° to 166.6°

    Get PDF
    Context. HR 4796 A is surrounded by a debris disc, observed in scattered light as an inclined ring with a high surface brightness. Past observations have raised several questions. First, a strong brightness asymmetry detected in polarised reflected light has recently challenged our understanding of scattering by the dust particles in this system. Secondly, the morphology of the ring strongly suggests the presence of planets, although no planets have been detected to date. Aims. We aim here at measuring with high accuracy the morphology and photometry of the ring in scattered light, in order to derive the phase function of the dust and constrain its near-infrared spectral properties. We also want to constrain the presence of planets and set improved constraints on the origin of the observed ring morphology. Methods. We obtained high-angular resolution coronagraphic images of the circumstellar environment around HR 4796 A with VLT/SPHERE during the commissioning of the instrument in May 2014 and during guaranteed-time observations in February 2015. The observations reveal for the first time the entire ring of dust, including the semi-minor axis that was previously hidden either behind the coronagraphic spot or in the speckle noise. Results. We determine empirically the scattering phase function of the dust in the H band from 13.6° to 166.6°. It shows a prominent peak of forward scattering, never detected before, for scattering angles below 30°. We analyse the reflectance spectra of the disc from the 0.95 μm to 1.6 μm, confirming the red colour of the dust, and derive detection limits on the presence of planetary mass objects. Conclusions. We confirm which side of the disc is inclined towards the Earth. The analysis of the phase function, especially below 45°, suggests that the dust population is dominated by particles much larger than the observation wavelength, of about 20 μm. Compact Mie grains of this size are incompatible with the spectral energy distribution of the disc, however the observed rise in scattering efficiency beyond 50° points towards aggregates which could reconcile both observables. We do not detect companions orbiting the star, but our high-contrast observations provide the most stringent constraints yet on the presence of planets responsible for the morphology of the dust

    An Extreme-AO Search for Giant Planets around a White Dwarf --VLT/SPHERE performance on a faint target GD 50

    Full text link
    CONTEXT. Little is known about the planetary systems around single white dwarfs although there is strong evidence that they do exist. AIMS. We performed a pilot study with the extreme-AO system on the Spectro-Polarimetric High-contrast Exoplanet REsearch (SPHERE) on the Very Large Telescopes (VLT) to look for giant planets around a young white dwarf, GD 50. METHODS. We were awarded science verification time on the new ESO instrument SPHERE. Observations were made with the InfraRed Dual-band Imager and Spectrograph in classical imaging mode in H band. RESULTS. Despite the faintness of the target (14.2 mag in R band), the AO loop was closed and a strehl of 37\% was reached in H band. No objects were detected around GD 50. We achieved a 5-sigma contrast of 6.2, 8.0 and 8.25 mags at 0{\farcs}2, 0{\farcs}4 and 0{\farcs}6 and beyond, respectively. We exclude any substellar objects more massive than 4.0 MJ_\textrm{J} at 6.2 AU, 2.9 MJ_\textrm{J} at 12.4 AU and 2.8 MJ_\textrm{J} at 18.6 AU and beyond. This rivals the previous upper limit set by Spitzer. We further show that SPHERE is the most promising instrument available to search for close-in substellar objects around nearby white dwarfs.Comment: A&A letters, accepte

    Compositional characterisation of the Themis family

    Full text link
    Context. It has recently been proposed that the surface composition of icy main-belt asteroids (B-,C-,Cb-,Cg-,P-,and D-types) may be consistent with that of chondritic porous interplanetary dust particles (CPIDPs). Aims. In the light of this new association, we re-examine the surface composition of a sample of asteroids belonging to the Themis family in order to place new constraints on the formation and evolution of its parent body. Methods. We acquired NIR spectral data for 15 members of the Themis family and complemented this dataset with existing spectra in the visible and mid-infrared ranges to perform a thorough analysis of the composition of the family. Assuming end-member minerals and particle sizes (<2\mum) similar to those found in CPIDPs, we used a radiative transfer code adapted for light scattering by small particles to model the spectral properties of these asteroids. Results. Our best-matching models indicate that most objects in our sample possess a surface composition that is consistent with the composition of CP IDPs.We find ultra-fine grained Fe-bearing olivine glasses to be among the dominant constituents. We further detect the presence of minor fractions of Mg-rich crystalline silicates. The few unsuccessfully matched asteroids may indicate the presence of interlopers in the family or objects sampling a distinct compositional layer of the parent body. Conclusions. The composition inferred for the Themis family members suggests that the parent body accreted from a mixture of ice and anhydrous silicates (mainly amorphous) and subsequently underwent limited heating. By comparison with existing thermal models that assume a 400km diameter progenitor, the accretion process of the Themis parent body must have occurred relatively late (>4Myr after CAIs) so that only moderate internal heating occurred in its interior, preventing aqueous alteration of the outer shell.Comment: 9 pages, 5 figures, accepted for publication in A&

    beta Pic b position relative to the Debris Disk

    Full text link
    Context. We detected in 2009 a giant, close-by planet orbiting {\beta} Pic, a young star surrounded with a disk, extensively studied for more than 20 years. We showed that if located on an inclined orbit, the planet could explain several peculiarities of {\beta} Pictoris system. However, the available data did not permit to measure the inclination of {\beta} Pic b with respect to the disk, and in particular to establish in which component of the disk - the main, extended disk or the inner inclined component/disk-, the planet was located. Comparison between the observed planet position and the disk orientation measured on previous imaging data was not an option because of potential biases in the measurements. Aims. Our aim is to measure precisely the planet location with respect to the dust disk using a single high resolution image, and correcting for systematics or errors that degrades the precision of the disk and planet relative position measurements. Methods. We gathered new NaCo data at Ks band, with a set-up optimized to derive simultaneously the orientation(s) of the disk(s) and that of the planet. Results. We show that the projected position of {\beta} Pic b is above the midplane of the main disk. With the current data and knowledge on the system, this implies that {\beta} Pic b cannot be located in the main disk. The data rather suggest the planet being located in the inclined component.Comment: 13 pages, 6 figures, to appear in Astronomy and Astrophysic

    The challenge of measuring the phase function of debris disks. Application to HR\,4796

    Full text link
    Abridged: Debris disks are valuable systems to study dust properties. Because they are optically thin at all wavelengths, we have direct access to the properties of dust grains. One very promising technique to study them is to measure their phase function. Disks that are highly inclined are promising targets as a wider range of scattering angles can be probed. The phase function is usually either inferred by comparing the observations to synthetic disk models assuming a parametrized phase function, or estimating it from the surface brightness of the disk. We argue here that the latter approach can be biased due to projection effects leading to an increase in column density along the major axis of a non flat disk. We present a novel approach to account for those column density effects. The method remains model dependent, as one still requires a disk model to estimate the density variations as a function of the scattering angle. This method allows us however to estimate the shape of the phase function without having to invoke any parametrized form. We apply our method to SPHERE/ZIMPOL observations of HR\,4796 and highlight the differences with previous measurements. Our modelling results suggest that the disk is not vertically flat at optical wavelengths. We discuss some of the caveats of the approach, mostly that our method remains blind to real local increase of the dust density, and that it cannot yet be readily applied to angular differential imaging observations. Similarly to previous studies on HR\,4796, we still cannot reconcile the full picture using a given scattering theory to explain the shape of the phase function, a long lasting problem for debris disks. Nonetheless, we argue that similar effects as the ones highlighted in this study can also bias the determination of the phase function in total intensity.Comment: Accepted for publication in A&A, 13 pages, 11 Figure

    Direct exoplanet detection and characterization using the ANDROMEDA method: Performance on VLT/NaCo data

    Full text link
    Context. The direct detection of exoplanets with high-contrast imaging requires advanced data processing methods to disentangle potential planetary signals from bright quasi-static speckles. Among them, angular differential imaging (ADI) permits potential planetary signals with a known rotation rate to be separated from instrumental speckles that are either statics or slowly variable. The method presented in this paper, called ANDROMEDA for ANgular Differential OptiMal Exoplanet Detection Algorithm is based on a maximum likelihood approach to ADI and is used to estimate the position and the flux of any point source present in the field of view. Aims. In order to optimize and experimentally validate this previously proposed method, we applied ANDROMEDA to real VLT/NaCo data. In addition to its pure detection capability, we investigated the possibility of defining simple and efficient criteria for automatic point source extraction able to support the processing of large surveys. Methods. To assess the performance of the method, we applied ANDROMEDA on VLT/NaCo data of TYC-8979-1683-1 which is surrounded by numerous bright stars and on which we added synthetic planets of known position and flux in the field. In order to accommodate the real data properties, it was necessary to develop additional pre-processing and post-processing steps to the initially proposed algorithm. We then investigated its skill in the challenging case of a well-known target, β\beta Pictoris, whose companion is close to the detection limit and we compared our results to those obtained by another method based on principal component analysis (PCA). Results. Application on VLT/NaCo data demonstrates the ability of ANDROMEDA to automatically detect and characterize point sources present in the image field. We end up with a robust method bringing consistent results with a sensitivity similar to the recently published algorithms, with only two parameters to be fine tuned. Moreover, the companion flux estimates are not biased by the algorithm parameters and do not require a posteriori corrections. Conclusions. ANDROMEDA is an attractive alternative to current standard image processing methods that can be readily applied to on-sky data

    Discovery of a low-mass companion inside the debris ring surrounding the F5V star HD 206893

    Get PDF
    Aims. Uncovering the ingredients and the architecture of planetary systems is a very active field of research that has fuelled many new theories on giant planet formation, migration, composition, and interaction with the circumstellar environment. We aim at discovering and studying new such systems, to further expand our knowledge of how low-mass companions form and evolve. Methods. We obtained high-contrast H-band images of the circumstellar environment of the F5V star HD 206893, known to host a debris disc never detected in scattered light. These observations are part of the SPHERE High Angular Resolution Debris Disc Survey (SHARDDS) using the InfraRed Dual-band Imager and Spectrograph (IRDIS) installed on VLT/SPHERE. Results. We report the detection of a source with a contrast of 3.6 × 10^(-5) in the H-band, orbiting at a projected separation of 270 milliarcsec or 10 au, corresponding to a mass in the range 24 to 73 M_(Jup) for an age of the system in the range 0.2 to 2 Gyr. The detection was confirmed ten months later with VLT/NaCo, ruling out a background object with no proper motion. A faint extended emission compatible with the disc scattered light signal is also observed. Conclusions. The detection of a low-mass companion inside a massive debris disc makes this system an analog of other young planetary systems such as β Pictoris, HR 8799 or HD 95086 and requires now further characterisation of both components to understand their interactions

    Adaptive optics in high-contrast imaging

    Full text link
    The development of adaptive optics (AO) played a major role in modern astronomy over the last three decades. By compensating for the atmospheric turbulence, these systems enable to reach the diffraction limit on large telescopes. In this review, we will focus on high contrast applications of adaptive optics, namely, imaging the close vicinity of bright stellar objects and revealing regions otherwise hidden within the turbulent halo of the atmosphere to look for objects with a contrast ratio lower than 10^-4 with respect to the central star. Such high-contrast AO-corrected observations have led to fundamental results in our current understanding of planetary formation and evolution as well as stellar evolution. AO systems equipped three generations of instruments, from the first pioneering experiments in the nineties, to the first wave of instruments on 8m-class telescopes in the years 2000, and finally to the extreme AO systems that have recently started operations. Along with high-contrast techniques, AO enables to reveal the circumstellar environment: massive protoplanetary disks featuring spiral arms, gaps or other asymmetries hinting at on-going planet formation, young giant planets shining in thermal emission, or tenuous debris disks and micron-sized dust leftover from collisions in massive asteroid-belt analogs. After introducing the science case and technical requirements, we will review the architecture of standard and extreme AO systems, before presenting a few selected science highlights obtained with recent AO instruments.Comment: 24 pages, 14 figure

    Dynamics of the Beta Pictoris planetary system and its falling evaporating bodies

    Full text link
    For decades, the spectral variations of Beta Pictoris have been modelled as the result of the evaporation of exocomets close to the star, termed falling evaporating bodies (FEBs). Resonant perturbations by a giant planet have been proposed to explain the dynamical origin of these stargrazers. The disk is now known to harbour two giant planets, Beta Pic b and c, orbiting the star at 9.9 au and 2.7 au. While the former almost matches the planet formerly suspected, the discovery of the latter complicates the picture. We first question the stability of the two-planet system. Then we investigate the dynamics of a disk of planetesimals orbiting the star with both planets to check the validity of the FEB generation mechanism. Symplectic N-body simulations are used to determine which regions of the planetesimal disk are dynamically stable. Then we focus on regions where disk particles are able to reach high eccentricities thanks to resonant mechanisms. The first result is that the system is dynamically stable. Both planets may temporarily fall in 7:1 mean motion resonance (MMR). Then, simulations reveal that the whole region extending between ~1.5 au and ~25 au is unstable to planetary perturbations. However, a disk below 1.5 au survives, which appears to constitute an active source of FEBs via high-order MMRs with Beta Pic c. Beta Pic b acts as a distant perturber that helps sustain the whole process. These simulations rule out the preceding FEB generation mechanism model, which placed their origin at around 4-5 au. Conversely, FEBs are likely to originate from a region much further in and related to MMRs with Beta Pic c. That mechanism also appears to last longer, as new planetesimals are able to continuously enter the MMRs and evolve towards the FEB state. Subsequently, the physical nature of the FEBs may differ from that previously thought, and presumably may not be icy.Comment: 14 pages, 10 figures. To appear in Astronomy & Astrophysic

    Prospects of detecting the polarimetric signature of the Earth-mass planet α Centauri B b with SPHERE/ZIMPOL

    Get PDF
    Context. Over the past five years, radial-velocity and transit techniques have revealed a new population of Earth-like planets with masses of a few Earth masses. Their very close orbit around their host star requires an exquisite inner working angle to be detected in direct imaging and sets a challenge for direct imagers that work in the visible range, such as SPHERE/ZIMPOL. Aims. Among all known exoplanets with less than 25 Earth masses we first predict the best candidate for direct imaging. Our primary objective is then to provide the best instrument setup and observing strategy for detecting such a peculiar object with ZIMPOL. As a second step, we aim at predicting its detectivity. Methods. Using exoplanet properties constrained by radial velocity measurements, polarimetric models and the diffraction propagation code CAOS, we estimate the detection sensitivity of ZIMPOL for such a planet in different observing modes of the instrument. We show how observing strategies can be optimized to yield the best detection performance on a specific target. Results. In our current knowledge of exoplanetary systems, α Centauri B b is the most promising target with less than 25 Earth masses for ZIMPOL. With a gaseous Rayleigh-scattering atmosphere and favorable inclinations, the planet could be detected in about four hours of observing time, using the four-quadrant phase-mask coronograph in the I band. However, if α Centauri B b should display unfavorable polarimetric and reflective properties similar to that of our Moon, it is around 50 times fainter than the best sensitivity of ZIMPOL. Conclusions. α Centauri B is a primary target for SPHERE. Dedicated deep observations specifically targeting the radial velocity-detected planet can lead to a detection if the polarimetric properties of the planet are favorable
    • …
    corecore