6,457 research outputs found

    Field Studies of Sedimentary Sequences in Eastern Hurd Peninsula Central Livingston Island, South Shetland Islands

    Get PDF

    Age estimates of isochronous reflection horizons by combining ice core, survey, and synthetic radar data.

    Get PDF
    Ice core records and ice-penetrating radar data contain complementary information on glacial subsurface structure and composition, providing various opportunities for interpreting past and present environmental conditions. To exploit the full range of possible applications, accurate dating of internal radar reflection horizons and knowledge about their constituting features is required. On the basis of three ice core records from Dronning Maud Land, Antarctica, and surface-based radar profiles connecting the drilling locations, we investigate the accuracies involved in transferring age-depth relationships obtained from the ice cores to continuous radar reflections. Two methods are used to date five internal reflection horizons: (1) conventional dating is carried out by converting the travel time of the tracked reflection to a single depth, which is then associated with an age at each core location, and (2) forward modeling of electromagnetic wave propagation is based on dielectric profiling of ice cores and performed to identify the depth ranges from which tracked reflections originate, yielding an age range at each drill site. Statistical analysis of all age estimates results in age uncertainties of 5 10 years for conventional dating and an error range of 1 16 years for forward modeling. For our radar operations at 200 and 250 MHz in the upper 100 m of the ice sheet, comprising some 1000 1500 years of deposition history, final age uncertainties are 8 years in favorable cases and 21 years at the limit of feasibility. About one third of the uncertainty is associated with the initial ice core dating; the remaining part is associated with radar data quality and analysis

    PANGAEA information system for glaciological data management

    Get PDF
    Specific parameters determined on cores from continental ice sheets or glaciers can be used to reconstruct former climate. To use this scientific resource effectively an information system is needed which guarantees consistent longtime storage of data and provides easy access for the scientific community.An information system to archive any data of paleoclimatic relevance, together with the related metadata, raw data and evaluated paleoclimatic data, is presented. The system, based on a relational database, provides standardized import and export routines, easy access with uniform retrieval functions, and tools for the visualization of the data. The network is designed as a client/server system providing access through the Internet with proprietary client software including a high functionality or read-only access on published data via the World Wide Web

    Electromagnetic wave speed in polar ice: Validation of the CMP technique with high resolution dielectric-profiling and gamma-density measurements

    Get PDF
    The accuracy of the traveltime-velocity and traveltime-depth profile derived from ground-penetrating radar (GPR) common-midpoint (CMP) surveys at different frequencies is investigated for the first time ever by direct comparison with the profile calculated from high resolution dielectric-profiling (DEP) ice core data.In addition, we compare two traveltime profiles calculated from ice core density data by means of different dielectrical mixture models with the DEP based profile.CMP surveys were carried out at frequencies of 25, 50, 100 and 200 MHz near the new European deep drilling site DML05 in Dronning Maud Land, Antarctica, during the 1998/99 field season.An improved scanning capacitor for high resolution DEP and a Gamma-densiometer for density measurements were used to determine thecomplex dielectric constant and the density at 5 mm increments along the ice core B32, retrieved in 1997/98 at DML05.The comparisons with DEP and density based velocity series show that the CMP velocity series are slightly higher, but asymptotically approach the core based velocities with depth.Root-mean-square differences of the DEP velocity series range between 8% for the 25 MHz CMP and 2% in the case of the 200 MHz survey.Density based velocities differ from the DEP velocities by less than 1%.The traveltime-depth series calculated from the interval velocities show a better agreement between all series than the velocity series.Differences are between 5.7 and 1.4% for the 25 and 200 MHz CMP measurements, and less than 0.6% for the density data.Based on these comparisons we evaluate the accuracy with which the depth of electromagnetic reflectors observed in common-offset profiles can be determined and discuss reasons for the observed differences between CMP- and core based profiles.Moreover, we compare the errors determined from the field measurements with those estimated from GPR system characteristics to provide a measure that can be used to estimate the accuracy of GPR analyses for the planning of GPR campaigns.Our results show that CMP surveys are a useful technique to determine the depth of radar reflectors in combination with common-offset measurements, especially on a region-wide basis

    In memoriam Prof. Dr. Bernhard Stauffer

    Get PDF
    corecore