12 research outputs found

    Investigation of Semiconductor Quantum Dots for Waveguide Electroabsorption Modulator

    Get PDF
    In this work, we investigated the use of 10-layer InAs quantum dot (QD) as active region of an electroabsorption modulator (EAM). The QD-EAM is a p-i-n ridge waveguide structure with intrinsic layer thickness of 0.4 μm, width of 10 μm, and length of 1.0 mm. Photocurrent measurement reveals a Stark shift of ~5 meV (~7 nm) at reverse bias of 3 V (75 kV/cm) and broadening of the resonance peak due to field ionization of electrons and holes was observed for E-field larger than 25 kV/cm. Investigation at wavelength range of 1,300–1320 nm reveals that the largest absorption change occurs at 1317 nm. Optical transmission measurement at this wavelength shows insertion loss of ~8 dB, and extinction ratio of ~5 dB at reverse bias of 5 V. Consequently, methods to improve the performance of the QD-EAM are proposed. We believe that QDs are promising for EAM and the performance of QD-EAM will improve with increasing research efforts

    High-power, high repetition rate, short-pulse mode-locking using flared waveguide quantum-dot lasers at 1.3 /spl mu/m

    No full text
    Ultra-short pulse, high power mode-locking is demonstrated in InGaAs quantum dot lasers using a flared waveguide design. 24GHz mode-locking with 790fs wide pulses and 500mW peak powers suitable for telecommunications applications are presented
    corecore