286 research outputs found

    Assessing the Mycotoxin-related Health Impact of Shifting from Meat-based Diets to Soy-based Meat Analogues in a Model Scenario Based on Italian Consumption Data

    Get PDF
    The aim of this study was to assess the risk of replacing meat with plant-based analogues with respect to mycotoxin exposure, as a proof of concept to demonstrate the need for a proper regulatory framework for mycotoxins in meat imitates. Hence, we considered a full replacement of meat consumption with soy-based meat analogues and we evaluated the exposure to AFB1 and OTA, based on the Italian National Food Consumption Survey INRAN-SCAI 2005–2006 and the European Food Safety Authority occurrence data. The overall health impact from soy-based food consumption and a meat-free diet was quantified in terms of Disability-Adjusted Life Years (DALYs) in three different contamination and consumption scenarios. The substitution of meat products with soy-based imitates would prevent up to 406.2 colorectal cancer cases/year/country associated with 532 healthy years of life. However, we also determined an increased risk of liver cancer and loss of healthy life-years due to AFB1 exposure and a potential risk of renal cancer as due to an increased intake of OTA, leading up to 1208 extra cancer cases associated with the loss of 12,080 healthy life-years/country. Shifting to a plant-based diet actually eliminates a cancer risk factor such as processed meat, however, higher and unexpected risks could arise if mycotoxins are not properly regulated in plant-based meat alternatives. Taking into account the ubiquitous occurrence of mycotoxins, also in the light of climate change, and the growing trend toward plant-based meat analogues, greater importance should be given to actual food consumption trends and correlated with updated natural toxins regulations and risk assessments

    Three-dimensional spatiotemporal optical solitons in nonlocal nonlinear media

    Full text link
    We demonstrate the existence of stable three-dimensional spatiotemporal solitons (STSs) in media with a nonlocal cubic nonlinearity. Fundamental (nonspinning) STSs forming one-parameter families are stable if their propagation constant exceeds a certain critical value, that is inversely proportional to the range of nonlocality of nonlinear response. All spinning three-dimensional STSs are found to be unstable.Comment: 14 pages, 6 figures, accepted to PRE, Rapid Communication

    Dark-Soliton Timing Jitter Caused By Fluctuations In Initial Pulse-Shape

    Get PDF
    The dark-soliton timing jitters caused by fluctuations in either the soliton initial phase angle or the background amplitude when such a soliton propagates in a monomode optical fiber under the influence of the stimulated Raman scattering are investigated and compared with those that exist when the stimulated Raman scattering is not present. In addition, it is demonstrated that in the presence of the stimulated Raman scattering, there exists a distance at which, for the negative soliton initial phase angle, the dark-soliton timing jitter caused by fluctuations in the background amplitude becomes zero

    The Sasa-Satsuma higher order nonlinear Schrodinger equation and its bilinearization and multi-soliton solutions

    Full text link
    Higher order and multicomponent generalizations of the nonlinear Schrodinger equation are important in various applications, e.g., in optics. One of these equations, the integrable Sasa-Satsuma equation, has particularly interesting soliton solutions. Unfortunately the construction of multi-soliton solutions to this equation presents difficulties due to its complicated bilinearization. We discuss briefly some previous attempts and then give the correct bilinearization based on the interpretation of the Sasa-Satsuma equation as a reduction of the three-component Kadomtsev-Petvishvili hierarchy. In the process we also get bilinearizations and multi-soliton formulae for a two component generalization of the Sasa-Satsuma equation (the Yajima-Oikawa-Tasgal-Potasek model), and for a (2+1)-dimensional generalization.Comment: 13 pages in RevTex, added reference

    Analysis of an atom laser based on the spatial control of the scattering length

    Full text link
    In this paper we analyze atom lasers based on the spatial modulation of the scattering length of a Bose-Einstein Condensate. We demonstrate, through numerical simulations and approximate analytical methods, the controllable emission of matter-wave bursts and study the dependence of the process on the spatial dependence of the scattering length along the axis of emission. We also study the role of an additional modulation of the scattering length in time.Comment: Submitted to Phys. Rev.

    Stable three-dimensional spinning optical solitons supported by competing quadratic and cubic nonlinearities

    Full text link
    We show that the quadratic interaction of fundamental and second harmonics in a bulk dispersive medium, combined with self-defocusing cubic nonlinearity, give rise to completely localized spatiotemporal solitons (vortex tori) with vorticity s=1. There is no threshold necessary for the existence of these solitons. They are found to be stable against small perturbations if their energy exceeds a certain critical value, so that the stability domain occupies about 10% of the existence region of the solitons. We also demonstrate that the s=1 solitons are stable against very strong perturbations initially added to them. However, on the contrary to spatial vortex solitons in the same model, the spatiotemporal solitons with s=2 are never stable.Comment: latex text, 10 ps and 2 jpg figures; Physical Review E, in pres

    Spatiotemporal discrete multicolor solitons

    Full text link
    We have found various families of two-dimensional spatiotemporal solitons in quadratically nonlinear waveguide arrays. The families of unstaggered odd, even and twisted stationary solutions are thoroughly characterized and their stability against perturbations is investigated. We show that the twisted and even solutions display instability, while most of the odd solitons show remarkable stability upon evolution.Comment: 18 pages,7 figures. To appear in Physical Review

    Nanostructured Biomaterials with Controlled Properties Synthesis and Characterization

    Get PDF
    Magnetic nanoparticles were obtained using an adjusted Massart method and were covered in a layer-by-layer technique with hydrogel-type biocompatible shells, from chitosan and hyaluronic acid. The synthesized nanocomposites were characterized using dynamic light scattering, transmission electron microscopy, and Fourier transformed infrared spectroscopy. Biocompatibility of magnetic nanostructures was determined by MTT (3-[4,5-dimethylthiazol-2-yl]-2,5-diphenyltetrazolium bromide) cell proliferation assay, swelling tests, and degradation tests. In addition, interaction of hydrogel-magnetic nanoparticles with microorganisms was studied. The possibility of precise nanoparticles size control, as long as the availability of bio-compatible covering, makes them suitable for biomedical applications

    Stable spinning optical solitons in three dimensions

    Full text link
    We introduce spatiotemporal spinning solitons (vortex tori) of the three-dimensional nonlinear Schrodinger equation with focusing cubic and defocusing quintic nonlinearities. The first ever found completely stable spatiotemporal vortex solitons are demonstrated. A general conclusion is that stable spinning solitons are possible as a result of competition between focusing and defocusing nonlinearities.Comment: 4 pages, 6 figures, accepted to Phys. Rev. Let
    • …
    corecore