16,732 research outputs found

    Causal conditioning and instantaneous coupling in causality graphs

    Full text link
    The paper investigates the link between Granger causality graphs recently formalized by Eichler and directed information theory developed by Massey and Kramer. We particularly insist on the implication of two notions of causality that may occur in physical systems. It is well accepted that dynamical causality is assessed by the conditional transfer entropy, a measure appearing naturally as a part of directed information. Surprisingly the notion of instantaneous causality is often overlooked, even if it was clearly understood in early works. In the bivariate case, instantaneous coupling is measured adequately by the instantaneous information exchange, a measure that supplements the transfer entropy in the decomposition of directed information. In this paper, the focus is put on the multivariate case and conditional graph modeling issues. In this framework, we show that the decomposition of directed information into the sum of transfer entropy and information exchange does not hold anymore. Nevertheless, the discussion allows to put forward the two measures as pillars for the inference of causality graphs. We illustrate this on two synthetic examples which allow us to discuss not only the theoretical concepts, but also the practical estimation issues.Comment: submitte

    Validity of the one-dimensional limp model for porous materials

    Full text link
    A straightforward criterion to determine the limp model validity for porous materials is addressed here. The limp model is an "equivalent fluid" model which gives a better description of the porous behavior than the well known "rigid frame" model. It is derived from the poroelastic Biot model assuming that the frame has no bulk stiffness. A criterion is proposed to identify the porous materials for which the limp model can be used. It relies on a new parameter, the Frame Stiffness Influence FSI based on porous material properties. The critical values of FSI under which the limp model can be used, are determined using a 1D analytical modeling for a specific boundary set: radiation of a vibrating plate covered by a porous layer.Comment: 12th International Student Conference on Electrical Engineering, Prague : Tch\`eque, R\'epublique (2008
    corecore