1,410 research outputs found
The 67 Hz Feature in the Black Hole Candidate GRS 1915+105 as a Possible ``Diskoseismic'' Mode
The Rossi X-ray Timing Explorer (RXTE) has made feasible for the first time
the search for high-frequency (~ 100 Hz) periodic features in black hole
candidate (BHC) systems. Such a feature, with a 67 Hz frequency, recently has
been discovered in the BHC GRS 1915+105 (Morgan, Remillard, & Greiner). This
feature is weak (rms variability ~0.3%-1.6%), stable in frequency (to within ~2
Hz) despite appreciable luminosity fluctuations, and narrow (quality factor Q ~
20). Several of these properties are what one expects for a ``diskoseismic''
g-mode in an accretion disk about a 10.6 M_sun (nonrotating) - 36.3 M_sun
(maximally rotating) black hole (if we are observing the fundamental mode
frequency). We explore this possibility by considering the expected luminosity
modulation, as well as possible excitation and growth mechanisms---including
turbulent excitation, damping, and ``negative'' radiation damping. We conclude
that a diskoseismic interpretation of the observations is viable.Comment: 4 Pages, Latex (emulateapj.sty included), to Appear in ApJ Letters,
Vol. 477, Final Version with Updated Reference
The Nuclear X-Ray Emission-line Structure in NGC 2992 Revealed by
We present the narrow emission-line structure revealed by a 135 ks Chandra observation of Seyfert galaxy NGC 2992, using the High Energy Transmission Grating Spectrometer. The source was observed in an historically low-flux state. Using a Bayesian Block search technique, we detected neutral Si Kα and S Kα fluorescence and two additional lines that are consistent with redshifted, ionized Si emission. The latter two features are indicative of a photoionized outflow with a velocity of ∼ 2500 km s⁻¹. We also observed prominent, unresolved line emission at the rest energy of Fe Kα, with a 90% confidence FWHM velocity width of < 2000 km s⁻¹ ( < 2800 km s⁻¹) and equivalent width of 406-1148 eV (288-858 eV) when broad Fe Kα line emission, as detected by Suzaku, was (was not) included in the model
Tracking the Orbital and Super-orbital Periods of SMC X-1
The High Mass X-ray Binary (HMXB) SMC X-1 demonstrates an orbital variation
of 3.89 days and a super-orbital variation with an average length of 55 days.
As we show here, however, the length of the super-orbital cycle varies by
almost a factor of two, even across adjacent cycles. To study both the orbital
and super-orbital variation we utilize lightcurves from the Rossi X-ray Timing
Explorer All Sky Monitor (RXTE-ASM). We employ the orbital ephemeris from
Wojdowski et al. (1998) to obtain the average orbital profile, and we show that
this profile exhibits complex modulation during non-eclipse phases.
Additionally, a very interesting ``bounceback'' in X-ray count rate is seen
during mid-orbital eclipse phases, with a softening of the emission during
these periods. This bounceback has not been previously identified in pointed
observations. We then define a super-orbital ephemeris (the phase of the
super-orbital cycle as a function of date) based on the ASM lightcurve and
analyze the trend and distribution of super-orbital cycle lengths. SMC X-1
exhibits a bimodal distribution of these lengths, similar to what has been
observed in other systems (e.g., Her X-1), but with more dramatic changes in
cycle length. There is some hint, but not conclusive evidence, for a dependence
of the super-orbital cycle length upon the underlying orbital period, as has
been observed previously for Her X-1 and Cyg X-2. Using our super-orbital
ephemeris we are also able to create an average super-orbital profile over the
71 observed cycles, for which we witness overall hardening of the spectrum
during low count rate times. We combine the orbital and super-orbital
ephemerides to study the correlation between the orbital and super-orbital
variations in the system.Comment: 10 pages, using emulateapj style. To be published in the
Astrophysical Journa
Is the `IR Coincidence' Just That?
(Abridged) Motch (1985) suggested that in the hard state of GX 339-4 the soft
X-ray power-law extrapolated backward in energy agrees with the IR flux. Corbel
& Fender (2002) showed that the hard state radio power-law extrapolated forward
in energy meets the extrapolated X-ray power-law at an IR break, which was
explicitly observed twice in GX 339-4. This `IR coincidence' has been cited as
further evidence that a jet might make a significant contribution to the X-rays
in hard state systems. We explore this hypothesis with a series of simultaneous
radio/X-ray observations of GX 339-4, taken during its 1997, 1999, and 2002
hard states. We fit these spectra, in detector space, with a simple, but
remarkably successful, doubly broken power-law that requires an IR spectral
break. For these observations, the break position and the integrated radio/IR
flux have stronger dependences upon the X-rays than the simplest jet
predictions. If one allows for a softening of the X-ray power law with
increasing flux, then the jet model agrees with the correlation. We also find
evidence that the radio/X-ray fcorrelation previously observed in GX 339-4
shows a `parallel track' for the 2002 hard state. The slope of the 2002
correlation is consistent with prior observations; however, the radio amplitude
is reduced. We then examine the correlation in Cyg X-1 through the use of radio
data, obtained with the Ryle radio telescope, and RXTE data, from the ASM and
pointed observations. We again find evidence of `parallel tracks', and here
they are associated with `failed transitions' to the soft state. We also find
that for Cyg X-1 the radio flux is more fundamentally correlated with the hard
X-ray flux.Comment: To Appear in the July 2005 Astrophysical Journal; 9 Pages, uses
emulateapj.st
Descending aortic calcification increases renal dysfunction and in-hospital mortality in cardiac surgery patients with intraaortic balloon pump counterpulsation placed perioperatively : a case control study
Introduction: Acute kidney injury (AKI) after cardiac surgery increases length of hospital stay and in-hospital mortality. A significant number of patients undergoing cardiac surgical procedures require perioperative intra-aortic balloon pump (IABP) support. Use of an IABP has been linked to an increased incidence of perioperative renal dysfunction and death. This might be due to dislodgement of atherosclerotic material in the descending thoracic aorta (DTA). Therefore, we retrospectively studied the correlation between DTA atheroma, AKI and in-hospital mortality.
Methods: A total of 454 patients were retrospectively matched to one of four groups: -IABP/-DTA atheroma, +IABP/-DTA atheroma, -IABP/+DTA atheroma, +IABP/+DTA atheroma. Patients were then matched according to presence/absence of DTA atheroma, presence/absence of IABP, performed surgical procedure, age, gender and left ventricular ejection fraction (LVEF). DTA atheroma was assessed through standard transesophageal echocardiography (TEE) imaging studies of the descending thoracic aorta.
Results: Basic patient characteristics, except for age and gender, did not differ between groups. Perioperative AKI in patients with -DTA atheroma/+IABP was 5.1% versus 1.7% in patients with -DTA atheroma/-IABP. In patients with +DTA atheroma/+IABP the incidence of AKI was 12.6% versus 5.1% in patients with +DTA atheroma/-IABP. In-hospital mortality in patients with +DTA atheroma/-IABP was 3.4% versus 8.4% with +DTA atheroma/+IABP. In patients with +DTA atheroma/+IABP in hospital mortality was 20.2% versus 6.4% with +DTA atheroma/-IABP. Multivariate logistic regression identified DTA atheroma > 1 mm (P = *0.002, odds ratio (OR) = 4.13, confidence interval (CI) = 1.66 to 10.30), as well as IABP support (P = *0.015, OR = 3.04, CI = 1.24 to 7.45) as independent predictors of perioperative AKI and increased in-hospital mortality. DTA atheroma in conjunction with IABP significantly increased the risk of developing acute kidney injury (P = 0.0016) and in-hospital mortality (P = 0.0001) when compared to control subjects without IABP and without DTA atheroma.
Conclusions: Perioperative IABP and DTA atheroma are independent predictors of perioperative AKI and in-hospital mortality. Whether adding an IABP in patients with severe DTA calcification increases their risk of developing AKI and mortality postoperatively cannot be clearly answered in this study. Nevertheless, when IABP and DTA are combined, patients are more likely to develop AKI and to die postoperatively in comparison to patients without IABP and DTA atheroma
Chandra Observations of the Interacting NGC 4410 Galaxy Group
We present high resolution X-ray imaging data from the ACIS-S instrument on
the Chandra telescope of the nearby interacting galaxy group NGC 4410. Four
galaxies in the inner portion of this group are clearly detected by Chandra,
including the peculiar low luminosity radio galaxy NGC 4410A. In addition to a
nuclear point source, NGC 4410A contains diffuse X-ray emission, including an
X-ray ridge extending out to about 12" (6 kpc) to the northwest of the nucleus.
This ridge is coincident with an arc of optical emission-line gas, which has
previously been shown to have optical line ratios consistent with shock
ionization. This structure may be due to an expanding superbubble of hot gas
caused by supernovae and stellar winds or by the active nucleus. The Chandra
observations also show four or five possible compact ultra-luminous X-ray (ULX)
sources (L(x) >= 10^39 erg/s) associated with NGC 4410A. At least one of these
candidate ULXs appears to have a radio counterpart, suggesting that it may be
due to an X-ray binary with a stellar-mass black hole, rather than an
intermediate mass black hole. In addition, a faint diffuse intragroup X-ray
component has been detected between the galaxies (L(x) ~ 10^41 erg/s). This
supports the hypothesis that the NGC 4410 group is in the process of evolving
via mergers from a spiral-dominated group (which typically have no
X-ray-emitting intragroup gas) to an elliptical-dominated group (which often
have a substantial intragroup medium).Comment: 27 pages, 14 figures; Accepted by Astronomical Journal; color images
at http://www.etsu.edu/physics/bsmith/research/n4410.htm
An X-Ray View of the Jet-Cycle in the Radio Loud AGN 3C120
We present a study of the central engine in the broad-line radio galaxy 3C120
using a multi-epoch analysis of a deep XMM-Newton observation and two deep
Suzaku pointings (in 2012). In order to place our spectral data into the
context of the disk-disruption/jet-ejection cycles displayed by this object, we
monitor the source in the UV/X-ray bands, and in the radio band. We find three
statistically acceptable spectral models, a disk-reflection model, a jet-model
and a jet+disk model. Despite being good descriptions of the data, the
disk-reflection model violates the radio constraints on the inclination, and
the jet-model has a fine-tuning problem, requiring a jet contribution exceeding
that expected. Thus, we argue for a composite jet+disk model. Within the
context of this model, we verify the basic predictions of the jet-cycle
paradigm, finding a truncated/refilling disk during the Suzaku observations and
a complete disk extending down to the innermost stable circular orbit (ISCO)
during the XMM-Newton observation. The idea of a refilling disk is further
supported by the detection of the ejection of a new jet knot approximately one
month after the Suzaku pointings. We also discover a step-like event in one of
the Suzaku pointings in which the soft band lags the hard band. We suggest that
we are witnessing the propagation of a disturbance from the disk into the jet
on a timescale set by the magnetic field.Comment: 14 pages, 10 figures, accepted for publication in Ap
Going with the flow: can the base of jets subsume the role of compact accretion disk coronae?
The hard state of X-ray binaries (XRBs) is characterized by a power law
spectrum in the X-ray band, and a flat/inverted radio/IR spectrum associated
with occasionally imaged compact jets. It has generally been thought that the
hard X-rays result from Compton upscattering of thermal accretion disk photons
by a hot, coronal plasma whose properties are inferred via spectral fitting.
Interestingly, these properties-especially those from certain magnetized corona
models-are very similar to the derived plasma conditions at the jet footpoints.
Here we explore the question of whether the `corona' and `jet base' are in fact
related, starting by testing the strongest premise that they are synonymous. In
such models, the radio through the soft X-rays are dominated by synchrotron
emission, while the hard X-rays are dominated by inverse Compton at the jet
base - with both disk and synchrotron photons acting as seed photons. The
conditions at the jet base fix the conditions along the rest of the jet, thus
creating a direct link between the X-ray and radio emission. We also add to
this model a simple iron line and convolve the spectrum with neutral
reflection. After forward-folding the predicted spectra through the detector
response functions, we compare the results to simultaneous radio/X-ray data
obtained from the hard states of the Galactic XRBs GX339-4 and Cygnus X-1.
Results from simple Compton corona model fits are also presented for
comparison. We demonstrate that the jet model fits are statistically as good as
the single-component corona model X-ray fits, yet are also able to address the
simultaneous radio data.Comment: Accepted to the Astrophysical Journal. 14 pages, emulateapj.st
- …