62 research outputs found
Generation of switchable singular beams with dynamic metasurfaces
Singular
beams have attracted great attention due to their optical
properties and broad applications from light manipulation to optical
communications. However, there has been a lack of practical schemes
with which to achieve switchable singular beams with sub-wavelength
resolution using ultrathin and flat optical devices. In this work,
we demonstrate the generation of switchable vector and vortex beams
utilizing dynamic metasurfaces at visible frequencies. The dynamic
functionality of the metasurface pixels is enabled by the utilization
of magnesium nanorods, which possess plasmonic reconfigurability upon
hydrogenation and dehydrogenation. We show that switchable vector
beams of different polarization states and switchable vortex beams
of different topological charges can be implemented through simple
hydrogenation and dehydrogenation of the same metasurfaces. Furthermore,
we demonstrate a two-cascade metasurface scheme for holographic pattern
switching, taking inspiration from orbital angular momentum-shift
keying. Our work provides an additional degree of freedom to develop
high-security optical elements for anti-counterfeiting applications
Facile fabrication of mesoporous silica micro-jets with multi-functionalities
Self-propelled micro/nano-devices have been proved as powerful tools in various applications given their capability of both autonomous motion and on-demand task fulfilment. Tubular micro-jets stand out as an important member in the family of self-propelled micro/nano-devices and are widely explored with respect to their fabrication and functionalization. A few methods are currently available for the fabrication of tubular micro-jets, nevertheless there is still a demand to explore the fabrication of tubular micro-jets made of versatile materials and with the capability of multi-functionalization. Here, we present a facile strategy for the fabrication of mesoporous silica micro-jets (MSMJs) for tubular micromotors which can carry out multiple tasks depending on their functionalities. The synthesis of MSMJs does not require the use of any equipment, making it facile and cost-effective for future practical use. The MSMJs can be modified inside, outside or both with different kinds of metal nanoparticles, which provide these micromotors with a possibility of additional properties, such as the anti-bacterial effect by silver nanoparticles, or biochemical sensing based on surface enhanced Raman scattering (SERS) by gold nanoparticles. Because of the high porosity, high surface area and also the easy surface chemistry process, the MSMJs can be employed for the efficient removal of heavy metals in contaminated water, as well as for the controlled and active drug delivery, as two proof-of-concept examples of environmental and biomedical applications, respectively. Therefore, taking into account the new, simple and cheap method of fabrication, highly porous structure, and multiple functionalities, the mesoporous silica based micro-jets can serve as efficient tools for desired applications
Establishing ZIF-8 as a reference material for hydrogen cryoadsorption: An interlaboratory study
Hydrogen storage by cryoadsorption on porous materials has the advantages of low material cost, safety, fast kinetics, and high cyclic stability. The further development of this technology requires reliable data on the H2 uptake of the adsorbents, however, even for activated carbons the values between different laboratories show sometimes large discrepancies. So far no reference material for hydrogen cryoadsorption is available. The metal-organic framework ZIF-8 is an ideal material possessing high thermal, chemical, and mechanical stability that reduces degradation during handling and activation. Here, we distributed ZIF-8 pellets synthesized by extrusion to 9 laboratories equipped with 15 different experimental setups including gravimetric and volumetric analyzers. The gravimetric H2 uptake of the pellets was measured at 77â
K and up to 100â
bar showing a high reproducibility between the different laboratories, with a small relative standard deviation of 3â4 % between pressures of 10â100â
bar. The effect of operating variables like the amount of sample or analysis temperature was evaluated, remarking the calibration of devices and other correction procedures as the most significant deviation sources. Overall, the reproducible hydrogen cryoadsorption measurements indicate the robustness of the ZIF-8 pellets, which we want to propose as a reference material.M. Maiwald, J.â
A. Villajos, R. Balderas and M. Hirscher acknowledge the EMPIR programme from the European Union's Horizon 2020 research and innovation programme for funding. F. Cuevas and F. Couturas acknowledge support from France 2030 program under project ANR-22-PEHY-0007. D. Cazorla and A. Berenguer-Murcia thank the support by PID2021-123079OB-I00 project funded by MCIN/AEI/10.13039/501100011033, and âERDF A way of making Europeâ. K.â
N. Heinselman, S. Shulda and P.â
A. Parilla acknowledge the support from the National Renewable Energy Laboratory, operated by Alliance for Sustainable Energy, LLC, for the U.S. Department of Energy (DOE) under Contract No. DE-AC36-08GO28308. Funding provided by U.S. Department of Energy Office of Energy Efficiency and Renewable Energy Hydrogen and Fuel Cell Technology Office through the HyMARC Energy Materials Network
Interplay of Linker Functionalization and Hydrogen Adsorption in the MetalâOrganic Framework MIL-101
Functionalization of metalâorganic frameworks results in higher hydrogen uptakes owing to stronger hydrogenâhost interactions. However, it has not been studied whether a given functional group acts on existing adsorption sites (linker or metal) or introduces new ones. In this work, the effect of two types of functional groups on MIL-101 (Cr) is analyzed. Thermal-desorption spectroscopy reveals that the âBr ligand increases the secondary building unitâs hydrogen affinity, while the âNH2 functional group introduces new hydrogen adsorption sites. In addition, a subsequent introduction of âBr and âNH2 ligands on the linker results in the highest hydrogen-store interaction energy on the cationic nodes. The latter is attributed to a push-and-pull effect of the linkers
Fundamentals of hydrogen storage in nanoporous materials
Physisorption of hydrogen in nanoporous materials offers an efficient and competitive alternative for hydrogen storage. At low temperatures (e.g. 77 K) and moderate pressures (below 100 bar) molecular H2 adsorbs reversibly, with very fast kinetics, at high density on the inner surfaces of materials such as zeolites, activated carbons and metalâorganic frameworks (MOFs). This review, by experts of Task 40 âEnergy Storage and Conversion based on Hydrogenâ of the Hydrogen Technology Collaboration Programme of the International Energy Agency, covers the fundamentals of H2 adsorption in nanoporous materials and assessment of their storage performance. The discussion includes recent work on H2 adsorption at both low temperature and high pressure, new findings on the assessment of the hydrogen storage performance of materials, the correlation of volumetric and gravimetric H2 storage capacities, usable capacity, and optimum operating temperature. The application of neutron scattering as an ideal tool for characterising H2 adsorption is summarised and state-of-the-art computational methods, such as machine learning, are considered for the discovery of new MOFs for H2 storage applications, as well as the modelling of flexible porous networks for optimised H2 delivery. The discussion focuses moreover on additional important issues, such as sustainable materials synthesis and improved reproducibility of experimental H2 adsorption isotherm data by interlaboratory exercises and reference materials
Hydrogen storage in complex hydrides: Past activities and new trends
Intense literature and research efforts have focussed on the exploration of complex hydrides for energy storage applications over the past decades. A focus was dedicated to the determination of their thermodynamic and hydrogen storage properties, due to their high gravimetric and volumetric hydrogen storage capacities, but their application has been limited because of harsh working conditions for reversible hydrogen release and uptake. The present review aims at appraising the recent advances on different complex hydride systems, coming from the proficient collaborative activities in the past years from the research groups led by the experts of the Task 40 'Energy Storage and Conversion Based on Hydrogen' of the Hydrogen Technology Collaboration Programme of the International Energy Agency. An overview of materials design, synthesis, tailoring and modelling approaches, hydrogen release and uptake mechanisms and thermodynamic aspects are reviewed to define new trends and suggest new possible applications for these highly tuneable materials
Materials for hydrogen-based energy storage - past, recent progress and future outlook
Globally, the accelerating use of renewable energy sources, enabled by increased efficiencies and reduced
costs, and driven by the need to mitigate the effects of climate change, has significantly increased
research in the areas of renewable energy production, storage, distribution and end-use. Central to this
discussion is the use of hydrogen, as a clean, efficient energy vector for energy storage. This review, by
experts of Task 32, âHydrogen-based Energy Storageâ of the International Energy Agency, Hydrogen TCP,
reports on the development over the last 6 years of hydrogen storage materials, methods and techniques,
including electrochemical and thermal storage systems. An overview is given on the background to the
various methods, the current state of development and the future prospects. The following areas are
covered; porous materials, liquid hydrogen carriers, complex hydrides, intermetallic hydrides, electrochemical storage of energy, thermal energy storage, hydrogen energy systems and an outlook is presented for future prospects and research on hydrogen-based energy storage
- âŠ