260 research outputs found

    Wavelength Dependent PSFs and their impact on Weak Lensing Measurements

    Full text link
    We measure and model the wavelength dependence of the PSF in the Hyper Suprime-Cam (HSC) Subaru Strategic Program (SSP) survey. We find that PSF chromaticity is present in that redder stars appear smaller than bluer stars in the g,r,g, r, and ii-bands at the 1-2 per cent level and in the zz and yy-bands at the 0.1-0.2 per cent level. From the color dependence of the PSF, we fit a model between the monochromatic PSF trace radius, RR, and wavelength of the form R(λ)λbR(\lambda)\propto \lambda^{b}. We find values of bb between -0.2 and -0.5, depending on the epoch and filter. This is consistent with the expectations of a turbulent atmosphere with an outer scale length of 10100\sim 10-100 m, indicating that the atmosphere is dominating the chromaticity. We find evidence in the best seeing data that the optical system and detector also contribute some wavelength dependence. Meyers and Burchat (2015) showed that bb must be measured to an accuracy of 0.02\sim 0.02 not to dominate the systematic error budget of the Large Synoptic Survey Telescope (LSST) weak lensing (WL) survey. Using simple image simulations, we find that bb can be inferred with this accuracy in the rr and ii-bands for all positions in the LSST field of view, assuming a stellar density of 1 star arcmin2^{-2} and that the optical PSF can be accurately modeled. Therefore, it is possible to correct for most, if not all, of the bias that the wavelength-dependent PSF will introduce into an LSST-like WL survey.Comment: 14 pages, 10 figures. Submitted to MNRAS. Comments welcom

    Prompt Detection of Fast Optical Bursts with the Vera C. Rubin Observatory

    Full text link
    The transient optical sky has remained largely unexplored on very short timescales. While there have been some experiments searching for optical transients from minutes to years, none have had the capability to distinguish millisecond Fast Optical Bursts (FOB). Such very fast transients could be the optical counterparts of Fast Radio Bursts (FRB), the prompt emission from γ\gamma-Ray Bursts (GRB), or other previously unknown phenomena. Here, we investigate a novel approach to the serendipitous detection of FOBs, which relies on searching for anomalous spatial images. In particular, due to their short duration, the seeing distorted images of FOBs should look characteristically different than those of steady sources in a standard optical exposure of finite duration. We apply this idea to simulated observations with the Vera C. Rubin Observatory, produced by tracing individual photons through a turbulent atmosphere, and down through the optics and camera of the Rubin telescope. We compare these simulated images to steady-source star simulations in 15 s integrations, the nominal Rubin exposure time. We report the classification accuracy results of a Neural Network classifier for distinguishing FOBs from steady sources. From this classifier, we derive constraints in duration-intensity parameter space for unambiguously identifying FOBs in Rubin observations. We conclude with estimates of the total number of detections of FOB counterparts to FRBs expected during the 10-year Rubin Legacy Survey of Space and Time (LSST).Comment: 7 pages, 4 figures, submitted to the Astrophysical Journa
    corecore