515 research outputs found
Structural and functional analysis of ypt2, an essential ras-related gene in the fission yeast Schizosaccharomyces pombe encoding a Sec4 protein homologue.
Using the cloned Saccharomyces cerevisiae YPT1 gene as hybridization probe, a gene, designated ypt2, was isolated from the fission yeast Schizosaccharomyces pombe and found to encode a 200 amino acid long protein most closely related to the ypt branch of the ras superfamily. Disruption of the ypt2 gene is lethal. The bacterially produced ypt2 gene product is shown to bind GTP. A region of the ypt2 protein corresponding to but different from the 'effector region' of ras proteins is also different from that of ypt1 proteins of different species but identical to the 'effector loop' of the S.cerevisiae SEC4 gene product, a protein known to be required for vesicular protein transport. The S.pombe ypt2 gene under control of the S.cerevisiae GAL10 promoter is able to suppress the temperature-sensitive phenotype of a S. cerevisiae sec4 mutant, indicating a functional similarity of these GTP-binding proteins from the two very distantly related yeasts
Identifying Bayesian Optimal Experiments for Uncertain Biochemical Pathway Models
Pharmacodynamic (PD) models are mathematical models of cellular reaction
networks that include drug mechanisms of action. These models are useful for
studying predictive therapeutic outcomes of novel drug therapies in silico.
However, PD models are known to possess significant uncertainty with respect to
constituent parameter data, leading to uncertainty in the model predictions.
Furthermore, experimental data to calibrate these models is often limited or
unavailable for novel pathways. In this study, we present a Bayesian optimal
experimental design approach for improving PD model prediction accuracy. We
then apply our method using simulated experimental data to account for
uncertainty in hypothetical laboratory measurements. This leads to a
probabilistic prediction of drug performance and a quantitative measure of
which prospective laboratory experiment will optimally reduce prediction
uncertainty in the PD model. The methods proposed here provide a way forward
for uncertainty quantification and guided experimental design for models of
novel biological pathways
First Order Static Excitation Potential: Scheme for Excitation Energies and Transition Moments
We present an approximation scheme for the calculation of the principal
excitation energies and transition moments of finite many-body systems. The
scheme is derived from a first order approximation to the self energy of a
recently proposed extended particle-hole Green's function. A hermitian
eigenvalue problem is encountered of the same size as the well-known Random
Phase Approximation (RPA). We find that it yields a size consistent description
of the excitation properties and removes an inconsistent treatment of the
ground state correlation by the RPA. By presenting a hermitian eigenvalue
problem the new scheme avoids the instabilities of the RPA and should be well
suited for large scale numerical calculations. These and additional properties
of the new approximation scheme are illuminated by a very simple exactly
solvable model.Comment: 15 pages revtex, 1 eps figure included, corrections in Eq. (A1) and
Sec. II
Review of biorthogonal coupled cluster representations for electronic excitation
Single reference coupled-cluster (CC) methods for electronic excitation are
based on a biorthogonal representation (bCC) of the (shifted) Hamiltonian in
terms of excited CC states, also referred to as correlated excited (CE) states,
and an associated set of states biorthogonal to the CE states, the latter being
essentially configuration interaction (CI) configurations. The bCC
representation generates a non-hermitian secular matrix, the eigenvalues
representing excitation energies, while the corresponding spectral intensities
are to be derived from both the left and right eigenvectors. Using the
perspective of the bCC representation, a systematic and comprehensive analysis
of the excited-state CC methods is given, extending and generalizing previous
such studies. Here, the essential topics are the truncation error
characteristics and the separability properties, the latter being crucial for
designing size-consistent approximation schemes. Based on the general order
relations for the bCC secular matrix and the (left and right) eigenvector
matrices, formulas for the perturbation-theoretical (PT) order of the
truncation errors (TEO) are derived for energies, transition moments, and
property matrix elements of arbitrary excitation classes and truncation levels.
In the analysis of the separability properties of the transition moments, the
decisive role of the so-called dual ground state is revealed. Due to the use of
CE states the bCC approach can be compared to so-called intermediate state
representation (ISR) methods based exclusively on suitably orthonormalized CE
states. As the present analysis shows, the bCC approach has decisive advantages
over the conventional CI treatment, but also distinctly weaker TEO and
separability properties in comparison with a full (and hermitian) ISR method
Receptor tyrosine kinase activation of RhoA is mediated by AKT phosphorylation of DLC1
We report several receptor tyrosine kinase (RTK) ligands increase RhoA-guanosine triphosphate (GTP) in untransformed and transformed cell lines and determine this phenomenon depends on the RTKs activating the AKT serine/threonine kinase. The increased RhoA-GTP results from AKT phosphorylating three serines (S298, S329, and S567) in the DLC1 tumor suppressor, a Rho GTPase-activating protein (RhoGAP) associated with focal adhesions. Phosphorylation of the serines, located N-terminal to the DLC1 RhoGAP domain, induces strong binding of that N-terminal region to the RhoGAP domain, converting DLC1 from an open, active dimer to a closed, inactive monomer. That binding, which interferes with the interaction of RhoA-GTP with the RhoGAP domain, reduces the hydrolysis of RhoA-GTP, the binding of other DLC1 ligands, and the colocalization of DLC1 with focal adhesions and attenuates tumor suppressor activity. DLC1 is a critical AKT target in DLC1-positive cancer because AKT inhibition has potent antitumor activity in the DLC1-positive transgenic cancer model and in a DLC1-positive cancer cell line but not in an isogenic DLC1-negative cell line
Prediction of huge X-ray Faraday rotation at the Gd N_4,5 threshold
X-ray absorption spectra in a wide energy range around the 4d-4f excitation
threshold of Gd were recorded by total electron yield from in-plane magnetized
Gd metal films. Matching the experimental spectra to tabulated absorption data
reveals unprecedented short light absorption lengths down to 3 nm. The
associated real parts of the refractive index for circularly polarized light
propagating parallel or antiparallel to the Gd magnetization, determined
through the Kramers-Kronig transformation, correspond to a magneto-optical
Faraday rotation of 0.7 degrees per atomic layer. This finding shall allow the
study of magnetic structure and magnetization dynamics of lanthanide elements
in nanosize systems and dilute alloys.Comment: 4 pages, 2 figures, final version resubmitted to Phys. Rev. B, Brief
Reports. Minor change
Comparison of Zn_{1-x}Mn_xTe/ZnTe multiple-quantum wells and quantum dots by below-bandgap photomodulated reflectivity
Large-area high density patterns of quantum dots with a diameter of 200 nm
have been prepared from a series of four Zn_{0.93}Mn_{0.07}Te/ZnTe multiple
quantum well structures of different well width (4 nm, 6 nm, 8 nm and 10 nm) by
electron beam lithography followed by Ar+ ion beam etching. Below-bandgap
photomodulated reflectivity spectra of the quantum dot samples and the parent
heterostructures were then recorded at 10 K and the spectra were fitted to
extract the linewidths and the energy positions of the excitonic transitions in
each sample. The fitted results are compared to calculations of the transition
energies in which the different strain states in the samples are taken into
account. We show that the main effect of the nanofabrication process is a
change in the strain state of the quantum dot samples compared to the parent
heterostructures. The quantum dot pillars turn out to be freestanding, whereas
the heterostructures are in a good approximation strained to the ZnTe lattice
constant. The lateral size of the dots is such that extra confinement effects
are not expected or observed.Comment: 23 pages, LaTeX2e (amsmath, epsfig), 7 EPS figure
Self-consistent Green's function approaches
We present the fundamental techniques and working equations of many-body
Green's function theory for calculating ground state properties and the
spectral strength. Green's function methods closely relate to other polynomial
scaling approaches discussed in chapters 8 and 10. However, here we aim
directly at a global view of the many-fermion structure. We derive the working
equations for calculating many-body propagators, using both the Algebraic
Diagrammatic Construction technique and the self-consistent formalism at finite
temperature. Their implementation is discussed, as well as the inclusion of
three-nucleon interactions. The self-consistency feature is essential to
guarantee thermodynamic consistency. The pairing and neutron matter models
introduced in previous chapters are solved and compared with the other methods
in this book.Comment: 58 pages, 14 figures, Submitted to Lect. Notes Phys., "An advanced
course in computational nuclear physics: Bridging the scales from quarks to
neutron stars", M. Hjorth-Jensen, M. P. Lombardo, U. van Kolck, Editor
Facilitating the analysis of a UK national blood service supply chain using distributed simulation
In an attempt to investigate blood unit ordering policies, researchers have created a discrete-event model of the UK National Blood Service (NBS) supply chain in the Southampton area of the UK. The model has been created using Simul8, a commercial-off-the-shelf discrete-event simulation package (CSP). However, as more hospitals were added to the model, it was discovered that the length of time needed to perform a single simulation severely increased. It has been claimed that distributed simulation, a technique that uses the resources of many computers to execute a simulation model, can reduce simulation runtime. Further, an emerging standardized approach exists that supports distributed simulation with CSPs. These CSP Interoperability (CSPI) standards are compatible with the IEEE 1516 standard The High Level Architecture, the defacto interoperability standard for distributed simulation. To investigate if distributed simulation can reduce the execution time of NBS supply chain simulation, this paper presents experiences of creating a distributed version of the CSP Simul8 according to the CSPI/HLA standards. It shows that the distributed version of the simulation does indeed run faster when the model reaches a certain size. Further, we argue that understanding the relationship of model features is key to performance. This is illustrated by experimentation with two different protocols implementations (using Time Advance Request (TAR) and Next Event Request (NER)). Our contribution is therefore the demonstration that distributed simulation is a useful technique in the timely execution of supply chains of this type and that careful analysis of model features can further increase performance
Optical determination of the Néel vector in a CuMnAs thin-film antiferromagnet
Recent breakthroughs in electrical detection and manipulation of antiferromagnets have opened a new avenue in the research of non-volatile spintronic devices.1-10 Antiparallel spin sublattices in antiferromagnets, producing zero dipolar fields, lead to the insensitivity to magnetic field perturbations, multi-level stability, ultrafast spin dynamics and other favorable characteristics which may find utility in fields ranging from magnetic memories to optical signal processing. However, the absence of a net magnetic moment and the ultra-short magnetization dynamics timescales make antiferromagnets notoriously difficult to study by common magnetometers or magnetic resonance techniques. In this paper we demonstrate the experimental determination of the Néel vector in a thin film of antiferromagnetic CuMnAs9,10 which is the prominent material used in the first realization of antiferromagnetic memory chips.10 We employ a femtosecond pump-probe magneto-optical experiment based on magnetic linear dichroism. This table-top optical method is considerably more accessible than the traditionally employed large scale facility techniques like neutron diffraction11 and Xray magnetic dichroism measurements.12-14 This optical technique allows an unambiguous direct determination of the Néel vector orientation in thin antiferromagnetic films utilized in devices directly from measured data without fitting to a theoretical model
- …