28 research outputs found
Resilient and Scalable Forwarding for Software-Defined Networks with P4-Programmable Switches
Traditional networking devices support only fixed features and limited configurability.
Network softwarization leverages programmable software and hardware platforms to remove those limitations.
In this context the concept of programmable data planes allows directly to program the packet processing pipeline of networking devices and create custom control plane algorithms.
This flexibility enables the design of novel networking mechanisms where the status quo struggles to meet high demands of next-generation networks like 5G, Internet of Things, cloud computing, and industry 4.0.
P4 is the most popular technology to implement programmable data planes.
However, programmable data planes, and in particular, the P4 technology, emerged only recently.
Thus, P4 support for some well-established networking concepts is still lacking and several issues remain unsolved due to the different characteristics of programmable data planes in comparison to traditional networking.
The research of this thesis focuses on two open issues of programmable data planes.
First, it develops resilient and efficient forwarding mechanisms for the P4 data plane as there are no satisfying state of the art best practices yet.
Second, it enables BIER in high-performance P4 data planes.
BIER is a novel, scalable, and efficient transport mechanism for IP multicast traffic which has only very limited support of high-performance forwarding platforms yet.
The main results of this thesis are published as 8 peer-reviewed and one post-publication peer-reviewed publication. The results cover the development of suitable resilience mechanisms for P4 data planes, the development and implementation of resilient BIER forwarding in P4, and the extensive evaluations of all developed and implemented mechanisms. Furthermore, the results contain a comprehensive P4 literature study.
Two more peer-reviewed papers contain additional content that is not directly related to the main results.
They implement congestion avoidance mechanisms in P4 and develop a scheduling concept to find cost-optimized load schedules based on day-ahead forecasts
Implementation and Evaluation of Activity-Based Congestion Management Using P4 (P4-ABC)
Activity-Based Congestion management (ABC) is a novel domain-based QoS mechanism providing more fairness among customers on bottleneck links. It avoids per-flow or per-customer states in the core network and is suitable for application in future 5G networks. However, ABC cannot be configured on standard devices. P4 is a novel programmable data plane specification which allows defining new headers and forwarding behavior. In this work, we implement an ABC prototype using P4 and point out challenges experienced during implementation. Experimental validation of ABC using the P4-based prototype reveals the desired fairness results
A Survey on Data Plane Programming with P4: Fundamentals, Advances, and Applied Research
With traditional networking, users can configure control plane protocols to
match the specific network configuration, but without the ability to
fundamentally change the underlying algorithms. With SDN, the users may provide
their own control plane, that can control network devices through their data
plane APIs. Programmable data planes allow users to define their own data plane
algorithms for network devices including appropriate data plane APIs which may
be leveraged by user-defined SDN control. Thus, programmable data planes and
SDN offer great flexibility for network customization, be it for specialized,
commercial appliances, e.g., in 5G or data center networks, or for rapid
prototyping in industrial and academic research. Programming
protocol-independent packet processors (P4) has emerged as the currently most
widespread abstraction, programming language, and concept for data plane
programming. It is developed and standardized by an open community and it is
supported by various software and hardware platforms. In this paper, we survey
the literature from 2015 to 2020 on data plane programming with P4. Our survey
covers 497 references of which 367 are scientific publications. We organize our
work into two parts. In the first part, we give an overview of data plane
programming models, the programming language, architectures, compilers,
targets, and data plane APIs. We also consider research efforts to advance P4
technology. In the second part, we analyze a large body of literature
considering P4-based applied research. We categorize 241 research papers into
different application domains, summarize their contributions, and extract
prototypes, target platforms, and source code availability.Comment: Submitted to IEEE Communications Surveys and Tutorials (COMS) on
2021-01-2