7 research outputs found

    Structural/Chemical Characterization and Bond Strength of a New Self-Adhesive Bulk-fill Restorative

    No full text
    PURPOSE: The material structure and chemical elemental composition of a new self-adhesive composite hybrid were investigated. The bonding performance when applied on flat (FLAT) vs high C-factor class-I cavity-bottom (CAVITY) dentin and in light-cure (LC) vs self-cure (SC) mode was determined. MATERIALS AND METHODS: The self-adhesive bulk-fill composite Surefil One (Su-O; Dentsply Sirona) was compared with the resin-modified glass-ionomer Fuji II LC Improved (Fuji2LC; GC) and the ion-releasing alkasite material Cention N (CentionN; Ivoclar Vivadent). The material structure was examined with SEM and TEM, while the chemical elemental composition was analyzed using EDS. The immediate and aged microtensile bond strength (μTBS) of Su-O_LC/SC was compared to that of Fuji2LC applied without any pre-treatment, and to that of CentionN applied following bonding with Adhese Universal (AU) (Ivoclar Vivadent) in self-etch mode (AU/CentionN). All restorative materials were bonded onto FLAT and CAVITY dentin. Statistical analysis was performed with the Kruskal-Wallis nonparametric test. RESULTS: EDS analysis revealed that Su-O was richer in C and P than the reference restorative materials. Applied to FLAT dentin, the significantly highest immediate and aged μTBS were recorded for AU/CentionN, which were not significantly different only from Su-O_LC. Applied to CAVITY dentin, the significantly highest immediate μTBS was recorded for AU/CentionN, which did not differ significantly only from Su-O_SC. Su-O_LC bonded to CAVITY dentin suffered from a high incidence of pre-test failures. CONCLUSION: While Su-O_LC bonded effectively and durably to FLAT dentin, Su-O_SC bonded more favorably than Su-O_LC in class-I cavities, which was probably related to shrinkage stress variously challenging the respective bond.status: publishe

    Performance of an end-to-end inventory demand forecasting pipeline using a federated data ecosystem

    No full text
    One of the key challenges for (fresh produce) retailers is achieving optimal demand forecasting, as it plays a crucial role in operational decision-making and dampens the Bullwhip Effect. Improved forecasts holds the potential to achieve a balance between minimizing waste and avoiding shortages. Different retailers have partial views on the same products, which—when combined—can improve the forecasting of individual retailers’ inventory demand. However, retailers are hesitant to share all their individual data. Therefore, we propose an end-to-end graph-based time series forecasting pipeline using a federated data ecosystem to predict inventory demand for supply chain retailers. Graph deep learning forecasting has the ability to comprehend intricate relationships, and it seamlessly tunes into the diverse, multi-retailer data present in a federated setup. The system aims to create a unified data view without centralization, addressing technical and operational challenges, which are discussed throughout the text. We test this pipeline using real-world data across large and small retailers, and discuss the performance obtained and how it can be further improved

    Bonding to enamel using alternative Enamel Conditioner/etchants

    No full text
    OBJECTIVE: Enamel bond durability of three new alternative etchants combined with three representative adhesives was determined. METHODS: The 'immediate' and 'aged' micro-tensile bond strength (μTBS) of the 3-step etch&rinse adhesive OptiBond FL ('O-FL', Kerr), 2-step self-etch (SE) adhesive Clearfil SE Bond 2 ('C-SE2', Kuraray Noritake) and universal adhesive Adhese Universal ('ADU', Ivoclar Vivadent) were measured when bonded to enamel following either a proprietary organic acid-containing Enamel Conditioner ('EC', Shofu), a phosphoric-acid monomer-containing Multi Etchant ('ME', Yamakin: 10-methacryloyloxy tetraethylene glycol dihydrogenphosphate or MTEGP), or a metal salt-based ZON etchant ('ZON', Ivoclar Vivadent: ZrO(NO3)2). All alternative etchants were used in replacement of phosphoric acid, the latter (K-Etchant, Kuraray Noritake) also used with O-FL and ADU, in addition to C-SE2 that was solely used in SE mode (controls). The enamel-etching patterns and de-bonded fracture surfaces were examined by SEM, while the interfaces with enamel were ultra-morphologically characterized by TEM. RESULTS: No statistically significant difference in immediate and aged μTBS, obtained by combining the three alternative etchants with the three adhesives, was recorded as compared with the respective controls, except for ME combined with O-FL. Upon aging, significant reduction in μTBS was recorded for the ME/C-SE2 and ME/ADU combinations. The percentage of adhesive failures increased with aging. SEM revealed similar etching patterns produced by EC and ZON as by classic phosphoric-acid etching, for which also numerous micro-resin tags at the adhesive-enamel interface were disclosed. SIGNIFICANCE: Durable bonding to enamel was generally obtained for all etchant/adhesive combinations with the exception of the ME/O-FL combination.status: publishe

    Zinc-Calcium-Fluoride Bioglass-Based Innovative Multifunctional Dental Adhesive with Thick Adhesive Resin Film Thickness

    No full text
    Apart from producing high bond strength to tooth enamel and dentin, a dental adhesive with biotherapeutic potential is clinically desirable, aiming to further improve tooth restoration longevity. In this laboratory study, an experimental two-step universal adhesive, referred to as Exp_2UA, applicable in both the etch-and-rinse (E&R) and self-etch (SE) modes and combining a primer, containing 10-methacryloyloxydecyldihydrogen phosphate as a functional monomer with chemical binding potential to hydroxyapatite, with a bioglass-containing hydrophobic adhesive resin, was multifactorially investigated. In addition to primary property assessment, including measurement of bond strength, water sorption, solubility, and polymerization efficiency, the resultant adhesive-dentin interface was characterized by transmission electron microscopy (TEM), the filler composition was analyzed by energy-dispersive X-ray spectroscopy, and the bioactive potential of the adhesive was estimated by measuring the long-term ion release and assessing its antienzymatic and antibacterial potential. Four representative commercial adhesives were used as reference/controls. Application in both the E&R and SE modes resulted in a durable bonding performance to dentin, as evidenced by favorable 1 year aged bond strength data and a tight interfacial ultrastructure that, as examined by TEM, remained ultramorphologically unaltered upon 1 year of water storage aging. TEM revealed a 20 μm thick hydrophobic adhesive layer with a homogeneous bioglass filler distribution. Adequate polymerization conversion resulted in extremely low water sorption and solubility. In situ zymography revealed reduced endogenous proteolytic activity, while Streptococcus mutans biofilm formation was inhibited. In conclusion, the three-/two-step E&R/SE Exp_2UA combines the high bonding potential and bond degradation resistance with long-term ion release, rendering the adhesive antienzymatic and antibacterial potential.status: publishe

    Genetically Determined Neuropathies

    No full text
    corecore